【題目】如圖,ABC 中,C=90°,將ABC 繞點(diǎn) C 順時(shí)針旋轉(zhuǎn) 90°,得到DEC其中點(diǎn) D、E 分別是 A、B 兩點(diǎn)旋轉(zhuǎn)后的對(duì)應(yīng)點(diǎn)).

(1)請(qǐng)畫出旋轉(zhuǎn)后的△DEC;

(2)試判斷 DE AB 的位置關(guān)系,并證明你的結(jié)論.

【答案】(1)見(jiàn)解析;(2) DEAB理由見(jiàn)解析.

【解析】

(1)根據(jù)旋轉(zhuǎn)變換得到圖形;(2)延長(zhǎng) DE AB 于點(diǎn) F,證明∠AFE=∠DCE90°即可.

(1)旋轉(zhuǎn)后的DEC 如圖所示.

(2)結(jié)論:DEAB

理由:延長(zhǎng) DE AB 于點(diǎn) F

由旋轉(zhuǎn)不變性可知:A=∠D,∠ACB=∠DCE=90°,

∵∠AEF=∠DEC,

∠∠AFE=∠DCE=90°,

DEAB

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)圖象的對(duì)稱軸是x+3=0,圖象經(jīng)過(guò)(1,﹣6),且與y軸的交點(diǎn)為(0,).

(1)求這個(gè)二次函數(shù)的解析式;

(2)當(dāng)x為何值時(shí),這個(gè)函數(shù)的函數(shù)值為0;

(3)當(dāng)x在什么范圍內(nèi)變化時(shí),這個(gè)函數(shù)的函數(shù)值yx的增大而增大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在一次測(cè)繪活動(dòng)中,某同學(xué)站在點(diǎn)A處觀測(cè)停放于B、C兩處的小船,測(cè)得船B在點(diǎn)A北偏東75°方向150米處,船C在點(diǎn)A南偏東15°方向120米處,則船B與船C之間的距離為______米(精確到0.1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】五一勞動(dòng)節(jié)大酬賓!,某商場(chǎng)設(shè)計(jì)的促銷活動(dòng)如下:在一個(gè)不透明的箱子里放有4個(gè)相同的小球,球上分別標(biāo)有“0”、“10”、“20“50的字樣.規(guī)定:在本商場(chǎng)同一日內(nèi),顧客每消費(fèi)滿300元,就可以在箱子里先后摸出兩個(gè)球(第一次摸出后不放回).商場(chǎng)根據(jù)兩小球所標(biāo)金額的和返還相等價(jià)格的購(gòu)物券,購(gòu)物券可以在本商場(chǎng)消費(fèi).某顧客剛好消費(fèi)300元.

(1)該顧客至多可得到________元購(gòu)物券

(2)請(qǐng)你用畫樹(shù)狀圖或列表的方法,求出該顧客所獲得購(gòu)物券的金額不低于50元的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在⊙O 中,AB、CD是互相垂直的兩條直徑,點(diǎn)E上,CF⊥AE 于點(diǎn)F,若點(diǎn)F四等分弦AE,且AE=8,則⊙O 的面積為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn) C、D 在線段 AB ,PCD 是等邊三角形,∠APB=120°

(1) 求證ACPPDB

(2) PC=3,AC=1,求 BD 的長(zhǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,B=60°,BC=2.將ABC繞點(diǎn)C順時(shí)針旋轉(zhuǎn)得到A′B′C , 連結(jié)AB′.若A、B′、A′在同一條直線上,則AA′的長(zhǎng)為( 。

A. 6 B. C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖AB是半圓的直徑,圖1中,點(diǎn)C在半圓外;圖2中,點(diǎn)C在半圓內(nèi),請(qǐng)僅用無(wú)刻度的直尺按要求畫圖.

1)在圖1中,畫出ABC的三條高的交點(diǎn);

2)在圖2中,畫出ABCAB邊上的高.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】為了測(cè)量某風(fēng)景區(qū)內(nèi)一座塔AB的高度,某人分別在塔的對(duì)面一樓房CD的樓底C、樓頂D處,測(cè)得塔頂A的仰角為45°30°,已知樓高CD10m,求塔的高度。(結(jié)果精確到01m)(參考數(shù)據(jù)≈141,≈173

查看答案和解析>>

同步練習(xí)冊(cè)答案