【題目】如圖,在△ABC中,∠ABC=60°,∠C=45°,點D,E分別為邊AB,AC上的點,且DE∥BC,BD=DE=2,CE=,BC=.動點P從點B出發(fā),以每秒1個單位長度的速度沿B→D→E→C勻速運動,運動到點C時停止.過點P作PQ⊥BC于點Q,設△BPQ的面積為S,點P的運動時間為t,則S關于t的函數(shù)圖象大致為( )
A. B.
C. D.
【答案】D
【解析】
當P點在BD上運動時,BD=t,由∠ABC=60°得△BPQ的底BQ=t·cos60°=,
高PQ= t·sin60°=,故面積為S==,故為二次函數(shù),當P點在BE上運動時,高PQ=不變,底BQ為BD ·cos60°+DP=1+(t-2)=t-1,故面積S==,為一次函數(shù),由此即可選出.
當P點在BD上運動時,BD=t,
∵∠ABC=60°
∴BQ=t·cos60°=,
PQ= t·sin60°=,
∴為S==,為二次函數(shù),
當P點在BE上運動時,高PQ=不變,
BQ=BD ·cos60°+DP=1+(t-2)=t-1,
∴S==,
為一次函數(shù),由此即可選出.
故選D.
科目:初中數(shù)學 來源: 題型:
【題目】(10分)如圖,一次函數(shù)與反比例函數(shù)的圖象交于A(1,4),B(4,n)兩點.
(1)求反比例函數(shù)的解析式;
(2)求一次函數(shù)的解析式;
(3)點P是x軸上的一動點,試確定點P并求出它的坐標,使PA+PB最。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線y=x分別與雙曲線y=(m>0,x>0),雙曲線y=(n>0,x>0)交于點A和點B,且,將直線y=x向左平移6個單位長度后,與雙曲線y= 交于點C,若S△ABC=4,則的值為_____,mn的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC 中,∠C=90°,CA=CB,D 為 AC 上的一點,AD=3CD,AE⊥AB 交 BD 延長線于 E,記△EAD,△DBC 的面積分別為 S1,S2,則 S1:S2=______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(0,4),B(3,4),P 為線段 OA 上一動點,過 O,P,B 三點的圓交 x 軸正半軸于點 C,連結 AB, PC,BC,設 OP=m.
(1)求證:當 P 與 A 重合時,四邊形 POCB 是矩形.
(2)連結 PB,求 tan∠BPC 的值.
(3)記該圓的圓心為 M,連結 OM,BM,當四邊形 POMB 中有一組對邊平行時,求所有滿足條件的 m 的值.
(4)作點 O 關于 PC 的對稱點O ,在點 P 的整個運動過程中,當點O 落在△APB 的內部 (含邊界)時,請寫出 m 的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】有兩張完全重合的矩形紙片,小亮同學將其中一張繞點A順時針旋轉90°后得到矩形AMEF(如圖1),連接BD、MF,若此時他測得BD=8cm,∠ADB=30度.請回答下列問題:(1)試探究線段BD與線段MF的關系,并簡要說明理由;
(2)小紅同學用剪刀將△BCD與△MEF剪去,與小亮同學繼續(xù)探究.他們將△ABD繞點A順時針旋轉得△AB1D1,AD1交FM于點K(如圖2),設旋轉角為β(0°<β<90°),當△AFK為等腰三角形時,請直接寫出旋轉角β的度數(shù);
(3)若將△AFM沿AB方向平移得到△A2F2M2(如圖3),F(xiàn)2M2與AD交于點P,A2M2與BD交于點N,當NP∥AB時,求平移的距離是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了傳承中華優(yōu)秀傳統(tǒng)文化,某校組織八年級學生參加了“漢字聽寫”大賽,賽后發(fā)現(xiàn)所有參賽學生的成績均不低于50分.為了更好地了解大賽的成績分布情況,隨機抽取了其中若干名學生的成績(成績x取整數(shù),總分100分)作為樣本進行整理,繪制如下不完整的條形統(tǒng)計圖.
漢字聽寫大賽成績分數(shù)段統(tǒng)計表
分數(shù)段 | 頻數(shù) |
2 | |
6 | |
9 | |
18 | |
15 |
漢字聽寫大賽成績分數(shù)段條形統(tǒng)計圖
(1)補全條形統(tǒng)計圖.
(2)這次抽取的學生成績的中位數(shù)在________的分數(shù)段中;這次抽取的學生成績在的分數(shù)段的人數(shù)占抽取人數(shù)的百分比是_______.
(3)若該校八年級一共有學生350名,成績在90分以上(含90分)為“優(yōu)”,則八年級參加這次比賽的學生中成績“優(yōu)”等的約有多少人?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,,E是OB的中點,連接CE并延長到點F,使EF=CE.連接AF交⊙O于點D,連接BD,BF.
(1)求證:直線BF是⊙O的切線;
(2)若OB=2,求BD的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a≠0)圖象的一部分,與x軸的交點A在點(2,0)和(3,0)之間,對稱軸是x=1.對于下列說法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實數(shù));⑤當﹣1<x<3時,y>0,其中正確的是( )
A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com