【題目】如圖,將一個(gè)等腰直角三角形按圖示方式依次翻折,則下列說法正確的個(gè)數(shù)有(

①DF平分∠BDE;②△BFD是等腰三角形;;③△CED的周長等于BC的長.

A. 0個(gè); B. 1個(gè); C. 2個(gè); D. 3個(gè).

【答案】C

【解析】

根據(jù)折疊的性質(zhì)可得出∠DBC=22.5°,△DEC和△DEF均是等腰直角三角形,結(jié)合選項(xiàng)所述即可判斷出正確與否.

解:①由折疊的性質(zhì)得,∠BDF=22.5°,∠FDE=CDE=45°,
DF不平分∠BDE
故①錯(cuò)誤,
②∵∠ABC=2DBC
∴∠DBC=22.5°,∠DFC=DCB=45°=DBF+BDF,
∴∠DBF=BDF=22.5°,
BF=DF,
故②正確,
③由折疊的性質(zhì)可得出△DEC和△DEF均是等腰直角三角形,
又∵BF=DF,
∴△CED的周長=CE+DE+CD=CE+FE+BF=BC,
故③正確,

綜上,②③正確,共2個(gè).
故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A、點(diǎn)D、線段BC,請用無刻度的直尺和圓規(guī)按下列要求與步驟畫圖:

1)畫直線AB;

2)畫射線DA

3)連接CD;

4)延長線段BC至點(diǎn)E,使得CEBC(請保留作圖痕跡);

5)在四邊形ABCD內(nèi)找一點(diǎn)O,使得OA+OB+OC+OD的值最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2﹣4x﹣m2=0
(1)求證:該方程有兩個(gè)不等的實(shí)根;
(2)若該方程的兩個(gè)實(shí)數(shù)根x1、x2滿足x1+2x2=9,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1是一個(gè)長為2m、寬為2n的長方形,沿圖中虛線用剪刀均分成四塊小長方形,然后按圖2的形狀拼成一下正方形.

1)請你用兩種不同的方法求圖2中陰影部分的面積?

       

2)觀察圖2,寫出三個(gè)代數(shù)式(m+n2,(mn2,4mn之間的等量關(guān)系: 

3)根據(jù)(2)中的等量關(guān)系,解決如下問題:若|a+b7|+|ab6|0,求(ab2的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,一張邊長為的正方形硬紙板,把它的四個(gè)角都剪去一個(gè)邊長為工(為正整數(shù))的小正方形,然后把它折成一個(gè)無蓋的長方體,設(shè)長方體的容積為,請回答下列問題:

1)用含有的代數(shù)式表示,則

2)完成下表:

1

2

3

4

5

6

7

3)觀察上表,當(dāng)取什么值時(shí),容積的值最大?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC△BDE都是等邊三角形,A、B、D三點(diǎn)共線.下列結(jié)論:①AECD;②BFBG;③△BFG是等邊三角形;④∠AHC60°.其中正確的有__________(只填序號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 中,定義直線 與雙曲線 的交點(diǎn) (m、n為正整數(shù))為 “雙曲格點(diǎn)”,雙曲線 在第一象限內(nèi)的部分沿著豎直方向平移或以平行于 軸的直線為對稱軸進(jìn)行翻折之后得到的函數(shù)圖象為其“派生曲線”.

(1)①“雙曲格點(diǎn)” 的坐標(biāo)為;
②若線段 的長為1個(gè)單位長度,則n=;
(2)圖中的曲線 是雙曲線 的一條“派生曲線”,且經(jīng)過點(diǎn) ,則 的解析式為 y=;
(3)畫出雙曲線 的“派生曲線”g(g與雙曲線 不重合),使其經(jīng)過“雙曲格點(diǎn)” 、 、

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算題:

(1)(-78) +(+5)+(+78) (2)(+23)+(-17)+(+6)+(-22)

(3)[45-(+)×36]÷5 (4)99×(-36)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC,點(diǎn)OAC邊上的一點(diǎn).過點(diǎn)O作直線MNBC,設(shè)MN交∠BCA的平分線于點(diǎn)E,交∠BCA的外角平分線于F

1)求證:EO=FO;(2)若CE=4,CF=3,你還能得到那些結(jié)論?

查看答案和解析>>

同步練習(xí)冊答案