如圖,拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(1,2)、B(2,1)和C(-2,-1)三點(diǎn).
(1)求拋物線的解析式;
(2)反比例函數(shù)y=數(shù)學(xué)公式的圖象的一個(gè)分支經(jīng)過點(diǎn)C,并且另個(gè)分支與拋物線在第一象限相交.
①求出k的值;
②反比函數(shù)y=數(shù)學(xué)公式的圖象是否經(jīng)過點(diǎn)A和點(diǎn)B,試說明理由;
③若點(diǎn)P(a,b)是反比例函數(shù)y=數(shù)學(xué)公式在第三象限的圖象上的一個(gè)動(dòng)點(diǎn),連接AB、PA、PB,請(qǐng)問是否存在這樣的一點(diǎn)P使△PAB的面積為3?如果存在,試求出所有符合條件的點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.

解:(1)∵拋物線y=ax2+bx+c經(jīng)過點(diǎn)A(1,2)、B(2,1)和
C(-2,-1)三點(diǎn)

解得:
∴拋物線的解析式為y=-x2++2

(2)①反比例函數(shù)y=的圖象的一個(gè)分支經(jīng)過點(diǎn)C(-2,-1)
∴k=(-2)×(-1)=2
②由①知k的值為2,所以反比例函數(shù)的解析式為y=,
∵1×2=2=k,
∴點(diǎn)A(1,2)在反比例函數(shù)y=的圖象上,
同理點(diǎn)B(2,1)也在反比例函數(shù)y=的圖象上,
即反比函數(shù)y=的圖象經(jīng)過點(diǎn)A和點(diǎn)B,
③存在
設(shè)點(diǎn)P的坐標(biāo)為(a,b)
因?yàn)辄c(diǎn)P(a,b)在y=上,
所以點(diǎn)P的坐標(biāo)為(a,
作PE∥x軸,作AD⊥PE,BE⊥PE,垂足分別為D、E.
則PD=-a+1,PE=-a+2,AD=-+2,BE=-+1
∴S△ADP=AD•PD=(-+2)(-a+1)=-a-+2
∴S梯形ABED=(AD+BE)•DE=-
∴S△BPE=PE•BE=-a-+2
∴S△PAB=S△ADP+S梯形ABED-S△BPE=-a-+
若△PAB的面積為3則-a-+=3
∴a2+3a+2=0
∴a1=-1,a2=-2
經(jīng)檢驗(yàn)a1=-1,a2=-2都是方程-a-+=3的解
所以點(diǎn)P的坐標(biāo)為(-1,-2)或(-2,-1)
分析:(1)根據(jù)待定系數(shù)法將A,B,C三點(diǎn)坐標(biāo)代入拋物線y=ax2+bx+c中,即可求得拋物線的解析式;
(2)①根據(jù)C點(diǎn)的坐標(biāo)即可求出反比例函數(shù)的解析式y(tǒng)=;②由k的值等于2,若A,B兩點(diǎn)的橫縱坐標(biāo)相乘等于2,則反比例函數(shù)就經(jīng)過該點(diǎn).③直接求△PAB的面積不容易,可以過P作PE∥x軸,作AD⊥PE于D,BE⊥PE于E,先求出四邊形ABEP的面積,再減去△BPE的面積,即得△PAB的面積,令其等于3,即可求得滿足條件的點(diǎn)P.
點(diǎn)評(píng):本題主要考查了待定系數(shù)法求反比例函數(shù)的解析式,同時(shí)在求解三角形的面積時(shí),要靈活的運(yùn)用割補(bǔ)法進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過點(diǎn)P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并通過計(jì)算說明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點(diǎn),試問當(dāng)x為何值時(shí),線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點(diǎn)A,交x軸正半軸于點(diǎn)B,交y軸正半軸于點(diǎn)D,精英家教網(wǎng)O為坐標(biāo)原點(diǎn),拋物線上一點(diǎn)C的橫坐標(biāo)為1.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對(duì)稱軸;
(2)⊙P是經(jīng)過A、B兩點(diǎn)的一個(gè)動(dòng)圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);
(3)若線段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請(qǐng)求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點(diǎn)C(0,-2),精英家教網(wǎng)與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動(dòng)點(diǎn),N是線段OC上一動(dòng)點(diǎn),且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時(shí),求點(diǎn)M、N的坐標(biāo);
(3)若平行于x軸的動(dòng)直線與該拋物線交于點(diǎn)P,與線段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案