【題目】已知關(guān)于x的方程mx2+4-3mx+2m-8=0m0).

1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;

2)設(shè)方程的兩個(gè)根分別為x1x2x1x2),若n=x2-x1m,且點(diǎn)Bm,n)在x軸上,求m的值.

【答案】1)見解析;(2m=4

【解析】

1)首先得到△=4-3m2-4m2m-8=m2+8m+16=m+42然后根據(jù)m0得到(m+420從而得到△>0,最后證得方程有兩個(gè)不相等的實(shí)數(shù)根;

2)利用根與系數(shù)的關(guān)系得出關(guān)于m的方程求得答案即可.

解:(1)∵△=4-3m2-4m2m-8),

=m2+8m+16

=m+42

又∵m0

∴(m+420

即△>0

∴方程有兩個(gè)不相等的實(shí)數(shù)根;

2)∵方程的兩個(gè)根分別為x1x2x1x2),

,且點(diǎn)Bmn)在x軸上,

解得:m=-2,m=4

m0,

m=4

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,C=90°,以BC為直徑的O交AB于點(diǎn)D,過點(diǎn)D作O的切線DE交AC于點(diǎn)E.

(1)求證:∠A=∠ADE;

(2)若AB=25,DE=10,弧DC的長為a,求DE、EC和弧DC圍成的部分的面積S.(用含字母a的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩人在筆直的湖邊公路上同起點(diǎn)、同終點(diǎn)、同方向勻速步行2400米,先到終點(diǎn)的人原地休息.已知甲先出發(fā)4分鐘,在整個(gè)步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時(shí)間t(分)之間的關(guān)系如圖所示,下列結(jié)論:

甲步行的速度為60米/分;

乙走完全程用了32分鐘;

乙用16分鐘追上甲;

乙到達(dá)終點(diǎn)時(shí),甲離終點(diǎn)還有300米

其中正確的結(jié)論有( 。

A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在△ABC中,ABBC5,AC6.△ECD是△ABC沿BC方向平移得到的,連接AEACBE相交于點(diǎn)O

1)判斷四邊形ABCE是怎樣的四邊形,說明理由;

2)如圖2,P是線段BC上一動(dòng)點(diǎn)(圖2),(不與點(diǎn)B、C重合),連接PO并延長交線段AE于點(diǎn)Q,QRBD,垂足為點(diǎn)R

①四邊形PQED的面積是否隨點(diǎn)P的運(yùn)動(dòng)而發(fā)生變化.若變化,請說明理由;若不變,求出四邊形PQED的面積;

②當(dāng)線段PB的長為何值時(shí),△PQR與△BOC相似.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】今年我區(qū)作為全國作文教學(xué)改革試驗(yàn)區(qū),舉辦了中小學(xué)生現(xiàn)場作文大賽,全區(qū)七、八年級的學(xué)生參加了中學(xué)組的比賽,大賽組委會對參賽獲獎(jiǎng)作品的成績進(jìn)行統(tǒng)計(jì),每篇獲獎(jiǎng)作品成績?yōu)?/span>m分(60m100)繪制了如下兩幅數(shù)據(jù)信息不完整的統(tǒng)計(jì)圖表.

獲獎(jiǎng)作品成績頻數(shù)分布表

分?jǐn)?shù)段

頻數(shù)

頻率

60x70

38

0.38

70x80

a

0.32

80x90

b

90x100

10

合計(jì)

1

請根據(jù)以上信息,解決下列問題:

1)獲獎(jiǎng)作品成績頻數(shù)分布表中a  ,b 

2)把獲獎(jiǎng)作品成績頻數(shù)分布直方圖缺失的信息補(bǔ)全;

3)某校八年級二班有兩名男同學(xué)和兩名女同學(xué)在這次大賽中獲獎(jiǎng),并且其中兩名同學(xué)獲得了大賽一等獎(jiǎng),請用列表或畫樹狀圖法求出恰好一男一女獲得一等獎(jiǎng)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,直線y=與拋物線y=交于A、B兩點(diǎn),且點(diǎn)Ax軸上,點(diǎn)B的橫坐標(biāo)為-4,點(diǎn)P為直線AB上方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過點(diǎn)Px軸的垂線交直線AB于點(diǎn)Q,PHABH

1)求b的值及sinPQH的值;

2)設(shè)點(diǎn)P的橫坐標(biāo)為t,用含t的代數(shù)式表示點(diǎn)P到直線AB的距離PH的長,并求出PH之長的最大值以及此時(shí)t的值;

3)連接PB,若線段PQPBH分成成PQBPQH的面積相等,求此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】定義:在平面直角坐標(biāo)系中,圖形G上點(diǎn)P的縱坐標(biāo)與其橫坐標(biāo)的差稱為P點(diǎn)的“坐標(biāo)差”,記作Zp,而圖形G上所有點(diǎn)的“坐標(biāo)差”中的最大值稱為圖形G的“特征值”.

1)①點(diǎn)A3,1)的“坐標(biāo)差”為 ;

②求拋物線的“特征值”;

2)某二次函數(shù)的“特征值”為,點(diǎn)B,與點(diǎn)C分別是此二次函數(shù)的圖象與軸和軸的交點(diǎn),且點(diǎn)B與點(diǎn)C的“坐標(biāo)差”相等.

①直接寫出 ;(用含的式子表示)

②求此二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB,AC均為⊙O的切線,切點(diǎn)分別為BC,點(diǎn)D是優(yōu)弧BC上一點(diǎn),則下列關(guān)系式中,一定成立的是( 。

A. A+D180°B. A+2D180°

C. B+C270°D. B+2C270°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,E為矩形ABCD的邊AD上一點(diǎn),點(diǎn)P從點(diǎn)B出發(fā)沿折線BE-ED-DC運(yùn)動(dòng)到點(diǎn)C停止,點(diǎn)Q從點(diǎn)B出發(fā)沿BC運(yùn)動(dòng)到點(diǎn)C停止,它們運(yùn)動(dòng)的速度都是1cm/s.若點(diǎn)P、點(diǎn)Q同時(shí)開始運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為ts),BPQ的面積為y),已知yt之間的函數(shù)圖象如圖2所示.

給出下列結(jié)論:①當(dāng)0t≤10時(shí),△BPQ是等腰三角形;②=48;③當(dāng)14t22時(shí),y=110-5t;④在運(yùn)動(dòng)過程中,使得△ABP是等腰三角形的P點(diǎn)一共有3個(gè);⑤△BPQ與△ABE相似時(shí),t=14.5

其中正確結(jié)論的序號是_______

查看答案和解析>>

同步練習(xí)冊答案