【題目】如圖,在Rt△ABC中,∠ABC=90°,AC的垂直平分線分別與AC,BC及AB的延長線相交于點(diǎn)D,E,F(xiàn),且BF=BC.⊙O是△BEF的外接圓,∠EBF的平分線交EF于點(diǎn)G,交⊙O于點(diǎn)H,連接BD,F(xiàn)H.
(1)求證:△ABC≌△EBF;
(2)試判斷BD與⊙O的位置關(guān)系,并說明理由;
(3)若AB=1,求HGHB的值.
【答案】
(1)證明:∵DF⊥AC,△ABC為Rt△,
∴∠CDE=∠EBF=90°
∵∠CED=∠FEB,
∴∠DCE=∠EFB,
在△ABC和△EBF中,
,
∴△ABC≌△EBF,(ASA)
(2)解:結(jié)論:BD與⊙O相切.
理由:連接OB,
∵DF是AB的中垂線,∠ABC=90°,
∴DB=DC=DA,
∴∠DBC=∠C.
由(1)∠DCB=∠EFB,而∠EFB=∠OBF,
∴∠DBC=∠OBF,
∴∠DBO=∠DBC+∠EBO=∠OBF+∠EBO=90°,
∴DB⊥OB,
∴BD與⊙O相切
(3)解:連接EH,
∵BH是∠EBF的平分線,
∴∠EBH=∠HBF=45°.∠HFE=∠HBE=45°.
又∠GHF=∠FHB,
∴△GHF∽△FHB,
∴ = ,
∴HGHB=HF2,
∵⊙O是Rt△BEF的內(nèi)接圓,
∴EF為⊙O的直徑,
∴∠EHF=90°,
又∠HFE=45°,
∴EH=HF,
∴EF2=EH2+HF2=2HF2,
在Rt△ABC中,AB=1,tan∠C= ,
∴BC=2,AC= ,
由(1)知△ABC≌△EBF,
∴EF=AC= ,
∴2HF2=EF2=5,
∴HF2= ,
故HGHB=HF2=
【解析】(1)根據(jù)ASA或AAS即可證明;(2)結(jié)論:BD與⊙O相切. 連接OB,只要證明OB⊥BD即可;(3)連接EH,首先證明△GHF∽△FHB,可得 = ,即HGHB=HF2 , 想辦法求出HF2即可解決問題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】幾何計算:
(1)如圖:已知AB=9cm,BD=3cm,C為AB的中點(diǎn),求線段DC的長.
(2)如圖,OE為∠AOD的平分線,∠COD=∠EOC,∠COD=15°,求:
①∠EOC的大小;
②∠AOD的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算.
(1)( x-y)7÷(y-x)2÷( x-y)3;
(2) ++;
(3)( -2)0- ++ ·;
(4) a4m+1÷(-a) 2m+1 (m為正整數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一堆有紅、白兩種顏色的球若干個,已知白球的個數(shù)比紅球少,但白球的2倍比紅球多.若把每一個白球都記作“2”,每一個紅球都記作“3”,則總數(shù)為“60”,那么這兩種球各有多少個?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】1或5 △ABC中,AB=AC=12厘米,∠B=∠C,BC=8厘米,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以2厘米/秒的速度由B點(diǎn)向C點(diǎn)運(yùn)動,同時,點(diǎn)Q在線段CA上由C點(diǎn)向A點(diǎn)運(yùn)動.若點(diǎn)Q的運(yùn)動速度為v厘米/秒,則當(dāng)△BPD與△CQP全等時,v的值為
A. 2 B. 3 C. 2或3 D. 1或5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AC=BC=2,正方形CDEF的頂點(diǎn)D、F分別在AC、BC邊上,設(shè)CD的長度為x,△ABC與正方形CDEF重疊部分的面積為y,則下列圖象中能表示y與x之間的函數(shù)關(guān)系的是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,數(shù)軸上點(diǎn)A表示的數(shù)為﹣2,點(diǎn)B表示的數(shù)為8,點(diǎn)P從點(diǎn)A出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運(yùn)動,同時點(diǎn)Q從點(diǎn)B出發(fā),以每秒2個單位長度的速度向左勻速運(yùn)動.設(shè)運(yùn)動時間為t秒(t>0).
(1)填空:
①A、B兩點(diǎn)間的距離AB= ,線段AB的中點(diǎn)表示的數(shù)為 ;
②用含t的代數(shù)式表示:t秒后,點(diǎn)P表示的數(shù)為 ;點(diǎn)Q表示的數(shù)為 .
(2)求當(dāng)t為何值時,PQ=AB;
(3)當(dāng)點(diǎn)P運(yùn)動到點(diǎn)B的右側(cè)時,PA的中點(diǎn)為M,N為PB的三等分點(diǎn)且靠近于P點(diǎn),求PM﹣BN的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC,AB=AC,以AB為直徑的⊙O分別交AC、BC于點(diǎn)D、E,點(diǎn)F在AC的延長線上,且∠CBF= ∠CAB.
(1)求證:直線BF是⊙O的切線;
(2)若AB=5,sin∠CBF= ,求BC和BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過點(diǎn)A(0,6)的直線AB與直線OC相交于點(diǎn)C(2,4)動點(diǎn)P沿路線O→C→B運(yùn)動.(1)求直線AB的解析式;(2)當(dāng)△OPB的面積是△OBC的面積的時,求出這時點(diǎn)P的坐標(biāo);(3)是否存在點(diǎn)P,使△OBP是直角三角形?若存在,直接寫出點(diǎn)P的坐標(biāo),若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com