【題目】如圖,已知⊙O的半徑為2,AB為直徑,CD為弦.AB與CD交于點(diǎn)M,將 沿CD翻折后,點(diǎn)A與圓心O重合,延長(zhǎng)OA至P,使AP=OA,連接PC
(1)求CD的長(zhǎng);
(2)求證:PC是⊙O的切線;
(3)點(diǎn)G為 的中點(diǎn),在PC延長(zhǎng)線上有一動(dòng)點(diǎn)Q,連接QG交AB于點(diǎn)E.交 于點(diǎn)F(F與B、C不重合).問GEGF是否為定值?如果是,求出該定值;如果不是,請(qǐng)說明理由.
【答案】
(1)解:如圖,連接OC,
∵ 沿CD翻折后,點(diǎn)A與圓心O重合,
∴OM= OA= ×2=1,CD⊥OA,
∵OC=2,
∴CD=2CM=2 =2 =2
(2)解:證明:∵PA=OA=2,AM=OM=1,CM= CD= ,∠CMP=∠OMC=90°,
∴PC= = =2 ,
∵OC=2,PO=2+2=4,
∴PC2+OC2=(2 )2+22=16=PO2,
∴∠PCO=90°,
∴PC是⊙O的切線
(3)解:解:GEGF是定值,證明如下,
連接GO并延長(zhǎng),交⊙O于點(diǎn)H,連接HF
∵點(diǎn)G為 的中點(diǎn)
∴∠GOE=90°,
∵∠HFG=90°,且∠OGE=∠FGH
∴△OGE∽△FGH
∴ =
∴GEGF=OGGH=2×4=8.
【解析】(1)弧CD 沿CD翻折后,點(diǎn)A與圓心O重合,OM=1,CD⊥OA,由OC=2,根據(jù)勾股定理得到CD=2CM=2;(2)根據(jù)勾股定理得到PC= 2,由OC=2,PO=2+2=4,得到PC2+OC2=PO2,∠PCO=90°,得到PC是⊙O的切線;(3)由點(diǎn)G為弧 ADB的中點(diǎn),得∠GOE=90°,由∠HFG=90°,且∠OGE=∠FGH,得到△OGE∽△FGH,求出GEGF=OGGH即可.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為培養(yǎng)學(xué)生的特長(zhǎng)愛好,提髙學(xué)生的綜合素質(zhì),某校音樂特色學(xué)習(xí)班準(zhǔn)備從京東商城里一次性購(gòu)買若干個(gè)尤克里里和豎笛(每個(gè)尤克里里的價(jià)格相同,每個(gè)豎笛的價(jià)格相同),購(gòu)買2個(gè)豎笛和1個(gè)尤克里里共需290元;豎笛單價(jià)比尤克里里單價(jià)的一半少25元.
(1)求豎笛和尤克里里的單價(jià)各是多少元?
(2)根據(jù)學(xué)校實(shí)際情況,需一次性購(gòu)買豎笛和尤克里里共20個(gè),但要求購(gòu)買豎笛和尤克里里的總費(fèi)用不超過3450元,則該校最多可以購(gòu)買多少個(gè)尤克里里?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)學(xué)生會(huì)為了解該校學(xué)生喜歡球類活動(dòng)的情況,隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查(要求每位學(xué)生只能填寫一種自己喜歡的球類),并將調(diào)查的結(jié)果繪制成如圖所示的兩幅不完整的統(tǒng)計(jì)圖.(把圓分成面積相等的兩部分)請(qǐng)根據(jù)圖中提供的信息,解答下列問題:
(1)參加調(diào)查的人數(shù)共有_______人;在扇形圖中,表示“其它球類”的扇形的圓心角為______度;
(2)將條形圖補(bǔ)充完整;
(3)若該校有名學(xué)生,估計(jì)喜歡“乒乓球”的學(xué)生共有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)的坐標(biāo)為,將點(diǎn)向右平移個(gè)單位得到點(diǎn),其中關(guān)于的一元一次不等式的解集為,過點(diǎn)作軸于得到長(zhǎng)方形,
(1)求點(diǎn)坐標(biāo)______及四邊形的面積_______;
(2)如圖2,點(diǎn)從點(diǎn)以每秒個(gè)單位長(zhǎng)度的速度在軸上向上運(yùn)動(dòng),同時(shí)點(diǎn)從點(diǎn)以每秒個(gè)單位長(zhǎng)度的速度勻速在軸上向左運(yùn)動(dòng),設(shè)運(yùn)動(dòng)的時(shí)間為秒,問是否存在一段時(shí)間,使得的面積不大于的面積,若存在,求出的取值范圍;若不存在,說明理由;
(3)在(2)的條件下,四邊形的面積是否發(fā)生變化,若不變化,請(qǐng)求出其值;若變化,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知A(2t,0),B(0,-2t),C(2t,4t)三點(diǎn),其中t>0,函數(shù)的圖象分別與線段BC,AC交于點(diǎn)P,Q.若S△PAB-S△PQB=t,則t的值為__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD邊長(zhǎng)為1,連接AC,AE平分∠CAD,交BC的延長(zhǎng)線于點(diǎn)E,FA⊥AE,交CE于點(diǎn)F,則EF的長(zhǎng)為____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列各式中:
①由3x=﹣4系數(shù)化為1得x=﹣;
②由5=2﹣x移項(xiàng)得x=5﹣2;
③由 去分母得2(2x﹣1)=1+3(x﹣3);
④由2(2x﹣1)﹣3(x﹣3)=1去括號(hào)得4x﹣2﹣3x﹣9=1.
其中正確的個(gè)數(shù)有( 。
A. 0個(gè) B. 1個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下列結(jié)淪中,錯(cuò)誤的有( 。
①Rt△ABC中,已知兩邊分別為3和4,則第三邊的長(zhǎng)為5;②三角形的三邊分別為a、b、c,若a2+b2=c2,則∠A=90°;③若△ABC中,∠A:∠B:∠C=1:5:6,則這個(gè)三角形是一個(gè)直角三角形;④若(x﹣y)2+M=(x+y)2成立,則M=4xy.
A. 0個(gè) B. 1個(gè) C. 2個(gè) D. 3個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l:y =x,過點(diǎn)A(0,1)作y軸的垂線交直線于點(diǎn)B,過點(diǎn)B作直線l的垂線交y軸于點(diǎn)A1;過點(diǎn)A1作y軸的垂線交直線l于點(diǎn)B1,過點(diǎn)B1作直線l的垂線交y軸于點(diǎn)A2;…按此作法繼續(xù)下去,則點(diǎn)A2019的坐標(biāo)為( )
A. (0,42019) B. (0,42018) C. (0,32019) D. (0,32018)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com