【題目】如圖1,點的坐標為,將點向右平移個單位得到點,其中關于的一元一次不等式的解集為,過點作軸于得到長方形,
(1)求點坐標______及四邊形的面積_______;
(2)如圖2,點從點以每秒個單位長度的速度在軸上向上運動,同時點從點以每秒個單位長度的速度勻速在軸上向左運動,設運動的時間為秒,問是否存在一段時間,使得的面積不大于的面積,若存在,求出的取值范圍;若不存在,說明理由;
(3)在(2)的條件下,四邊形的面積是否發(fā)生變化,若不變化,請求出其值;若變化,說明理由.
【答案】(1);;(2)存在,;(3)不變;值為.
【解析】
(1)利用不等式求出m的值,結合平移的性質得出B、C點坐標,再利用矩形面積求法得出答案;
(2)利用Q,P點移動速度分別表示出△BOQ和△BOP的面積,進而得出t的取值范圍,即可得出答案;
(3)利用
(1)由得,
∵不等式的解集為
∴
解得m= 4
∵點A的坐標為(0, 2), 且向右平移b個單位得到點B
∴B(4, 2)
∵BC⊥x軸于C
∴C(4,0)
∵AB//OC,∠AOC=∠BCO = 90°
∴∠B+∠OCB = 180°
∴∠B=90°
∴四邊形AOCB是矩形
∴
故答案為:;;
(2)存在,理由如下:
由題意知: OQ= t,CP= 2t
∵四邊形AOCB是矩形,OC= 4
∴∠BAO=∠BCO= 90°,OP=4- 2t
∴AB⊥OA,BC⊥OC
∵
若的面積不大于的面積.則
解得:
∵t>0
∴
(3)不變,理由如下:
∵
∴
= 2t+4- 2t
=4
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在一方形ABCD中.E為對角線AC上一點,連接EB、ED,
(1)求證:△BEC≌△DEC:
(2)延長BE交AD于點F,若∠DEB=140°.求∠AFE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】現(xiàn)有一個長、寬、高分別為5dm、4dm、3dm的無蓋長方體木箱(如圖,AB=5dm,BC=4dm,AE=3dm).
(1) 求線段BG的長;
(2) 現(xiàn)在箱外的點A處有一只蜘蛛,箱內(nèi)的點C處有一只小蟲正在午睡,保持不動.請你為蜘蛛設計一種捕蟲方案,使得蜘蛛能以最短的路程捕捉到小蟲.(木板的厚度忽略不計)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,將三角形ABC向左平移至點B與原點重合,得三角形A′OC′.
(1)直接寫出三角形ABC的三個頂點的坐標A ,B ,C ;
(2)畫出三角形A′OC′;
(3)求三角形ABC的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將正方形對折后展開(圖④是連續(xù)兩次對折后再展開),再按圖示方法折疊,能夠得到一個直角三角形(陰影部分),且它的一條直角邊等于斜邊的一半,這樣的圖形有( ).
A. 個 B. 個 C. 個 D. 個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知⊙O的半徑為2,AB為直徑,CD為弦.AB與CD交于點M,將 沿CD翻折后,點A與圓心O重合,延長OA至P,使AP=OA,連接PC
(1)求CD的長;
(2)求證:PC是⊙O的切線;
(3)點G為 的中點,在PC延長線上有一動點Q,連接QG交AB于點E.交 于點F(F與B、C不重合).問GEGF是否為定值?如果是,求出該定值;如果不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=3,AC= ,AB的垂直平分線ED交BC的延長線于D點,垂足為E,則sin∠CAD=( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在矩形ABCD中,動點P從點B出發(fā),沿BC→CD→DA運動至點A停止.設點P運動的路程為x,△ABP的面積為y,y關于x的函數(shù)圖象如圖2所示,則m的值是( )
A.6
B.8
C.11
D.16
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com