【題目】在一條不完整的數(shù)軸上從左到右有點A,B,C,其中AB=2,BC=1,如圖所示,設(shè)點A,B,C所對應(yīng)數(shù)的和是p.
(1)若以B為原點,寫出點A,C所對應(yīng)的數(shù),并計算p的值;若以C為原點,p又是多少?
(2)若原點O在圖中數(shù)軸上點C的右邊,且CO=28,求p.
【答案】(1)C表示1,A表示2,-1;A表示3,B表示1,-4;(2)88.
【解析】
(1)根據(jù)以B為原點,則C表示1,A表示-2,進(jìn)而得到p的值;根據(jù)以C為原點,則A表示-3,B表示-1,進(jìn)而得到p的值;
(2)根據(jù)原點O在圖中數(shù)軸上點C的右邊,且CO=28,可得C表示-28,B表示-29,A表示-31,據(jù)此可得p的值.
(1)若以B為原點,則C表示1,A表示2,
∴p=1+02=1;
若以C為原點,則A表示3,B表示1,
∴p=31+0=4;
(2)若原點O在圖中數(shù)軸上點C的右邊,且CO=28,則C表示28,B表示29,A表示31,
∴p=312928=88.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】學(xué)校6名教師和234名學(xué)生集體外出活動,準(zhǔn)備租用45座大車或30座小車.若租用1輛大車2輛小車共需租車費1000元;若租用2輛大車一輛小車共需租車費1100元.
(1)求大、小車每輛的租車費各是多少元?
(2)若每輛車上至少要有一名教師,且總租車費用不超過2300元,求最省錢的租車方案.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小明的爸爸去參加一個重要會議,小明坐在汽車上用所學(xué)知識繪制了一張反映小車速度與時間的關(guān)系圖,第二天,小明拿著這張圖給同學(xué)看,并向同學(xué)提出如下問題,你能回答嗎?
(1)在上述變化過程中,圖象表示了那兩個變量的關(guān)系?哪個是自變量?哪個是因變量?
(2)小車共行駛了多少時間?最高時速是什么?停止了幾分鐘?
(3)小車在哪段時間保持勻速行駛?勻速行駛了多少千米?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,點是線段上一點,,.
(1)若是的高線,且,求的長.
(2)若是的角平分線,,求出的面積.
(3)填空:若是的中線,設(shè)長為,則的取值范圍______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,拋物線與x軸相交于點A(-2,0)、B(4,0),與y軸交于點C(0,-4),BC與拋物線的對稱軸相交于點D.
(1)求該拋物線的表達(dá)式,并直接寫出點D的坐標(biāo);
(2)過點A作AE⊥AC交拋物線于點E,求點E的坐標(biāo);
(3)在(2)的條件下,點F在射線AE上,若△ADF∽△ABC,求點F 的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,菱形ABCD的對角線相交于點O,過點D作DE∥AC,且DE=AC,連接CE、OE,連接AE,交OD于點F,若AB=2,∠ABC=600,則AE的長為( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有大小兩種貨車,3輛大貨車與2輛小貨車一次可以運貨21噸,2輛大貨車與4輛小貨車一次可以運貨22噸.
(1)每輛大貨車和每輛小貨車一次各可以運貨多少噸?
(2)現(xiàn)有這兩種貨車共10輛,要求一次運貨不低于35噸,則其中大貨車至少多少輛?(用不等式解答)
(3)日前有23噸貨物需要運輸,欲租用這兩種貨車運送,要求全部貨物一次運完且每輛車必須裝滿.已知每輛大貨車一次運貨租金為300元,每輛小貨車一次運貨租金為200元,請列出所有的運輸方案井求出最少租金.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在長方形紙片ABCD中,AB=m,AD=n,將兩張邊長分別為6和4的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),長方形中未被這兩張正方形紙片覆蓋的部分用陰影表示,設(shè)圖1中陰影部分的面積為S1,圖2中陰影部分的面積為S2.
(1)在圖1中,EF=___,BF=____;(用含m的式子表示)
(2)請用含m、n的式子表示圖1,圖2中的S1,S2,若m-n=2,請問S2-S1的值為多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D為邊BC的中點,點E在△ABC內(nèi),AE平分∠BAC,CE⊥AE點F在AB上,且BF=DE
(1)求證:四邊形BDEF是平行四邊形
(2)線段AB,BF,AC之間具有怎樣的數(shù)量關(guān)系?證明你所得到的結(jié)論
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com