【題目】如圖,已知小島B在基地A的南偏東30°方向上,與基地A相距10海里,貨輪C在基地A的南偏西60°方向、小島B的北偏西75°方向上,那么貨輪C與小島B的距離是________海里.

【答案】10

【解析】

由已知可得△ABC是等腰直角三角形,已知AB=10海里,根據(jù)等腰直角三角形的性質(zhì)即可求得斜邊BC的長.

解:如圖,由題意得,∠BAD=30,∠CAD=60,∠CBE=75,AB=10海里.

∵AD∥BE,

∴∠ABE=∠BAD=30,

∴∠ABC=∠CBE-∠ABE=75-30=45

在△ABC中,∵∠BAC=∠BAD+∠CAD=30+60=90,∠ABC=45,

∴△ABC是等腰直角三角形,

∵AB=10海里,

AC=10海里,

∴BC==10海里

故答案為:10

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】給定關(guān)于的二次函數(shù) ,

學(xué)生甲:當(dāng)時,拋物線與 軸只有一個交點(diǎn),因此當(dāng)拋物線與軸只有一個交點(diǎn)時,的值為3;

學(xué)生乙:如果拋物線在軸上方,那么該拋物線的最低點(diǎn)一定在第二象限;

請判斷學(xué)生甲、乙的觀點(diǎn)是否正確,并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖像如圖所示,并且關(guān)于x的一元二次方程ax2+bx+c –m=0有兩個實(shí)數(shù)根,下列結(jié)論:①b2-4ac>0;②abc>0;③;④,其中正確的個數(shù)有( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市某社會團(tuán)體組織人員參觀皇窯瓷展,主辦方對團(tuán)體購票實(shí)行優(yōu)惠:在原定票價的基礎(chǔ)上,每張降價40元,則按原定票價需花費(fèi)6000元購買門票,現(xiàn)在只花了4000元.

求每張門票原定的票價;

在展覽期間,平均每天可售出個人票2000張,現(xiàn)主辦方?jīng)Q定對個人購票也采取優(yōu)惠措施,發(fā)現(xiàn)原定票價每降低2元,平均每天可多售出個人票40張,若要使平均每天的個人票收入達(dá)到241500元,且能有效控制游覽人數(shù),則票價應(yīng)降低多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某水庫上游有一單孔拋物線型拱橋,它的跨度AB為100米.最低水位(與AB在同一平面)時橋面CD距離水面25米,橋拱兩端有兩根25米高的水泥柱BCAD,中間等距離豎立9根鋼柱支撐橋面,拱頂正上方的鋼柱EF長5米.

(1)建立適當(dāng)?shù)闹苯亲鴺?biāo)系,求拋物線型橋拱的解析式;

(2)在最低水位時,能并排通過兩艘寬28米,高16米的游輪嗎?(假設(shè)兩游輪之間的安全間距為4米)

(3)由于下游水庫蓄水及雨季影響導(dǎo)致水位上漲,水位最高時比最低水位高出13米,請問最高水位時沒在水面以下的鋼柱總長為多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】校車安全是近幾年社會關(guān)注的熱點(diǎn)問題,安全隱患主要是超速和超載.某中學(xué)九年級數(shù)學(xué)活動小組進(jìn)行了測試汽車速度的實(shí)驗(yàn),如圖,先在筆直的公路l旁選取一點(diǎn)A,在公路l上確定點(diǎn)B、C,使得ACl,BAC=60°,再在AC上確定點(diǎn)D,使得BDC=75°,測得AD=40米,已知本路段對校車限速是50千米/時,若測得某校車從B到C勻速行駛用時10秒,問這輛車在本路段是否超速?請說明理由(參考數(shù)據(jù):=1.41,=1.73)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( ).

A. 一個游戲的中獎概率是,則做10次這樣的游戲一定會中獎

B. 一組數(shù)據(jù)6,8,7,8,8,9,10的眾數(shù)和中位數(shù)都是8

C. 為了解全國中學(xué)生的心理健康情況,應(yīng)該采用普查的方式

D. 若甲組數(shù)據(jù)的方差S2=0.01,乙組數(shù)據(jù)的方差S2=0.1,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的題目及分析過程,并按要求進(jìn)行證明.已知:如圖,EBC的中點(diǎn),點(diǎn)ADE上,且∠BAE=∠CDE.

求證:AB=CD.

證明兩條線段相等,常用的一般方法是應(yīng)用全等三角形或等腰三角形的判定和性質(zhì),觀察本題中要證明的兩條線段,它們不在同一個三角形中,且它們分別所在的兩個三角形也不全等.因此,要證AB=CD,必須添加適當(dāng)?shù)妮o助線,構(gòu)造全等三角形或等腰三角形.

現(xiàn)給出如下三種添加輔助線的方法,請任意選擇其中一種,對原題進(jìn)行證明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,雙曲線y=與直線y=2x+2交于點(diǎn)A1,a).

(1)求a,m的值;

(2)求該雙曲線與直線y=﹣2x+2另一個交點(diǎn)B的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案