【題目】閱讀下列材料:

對(duì)于多項(xiàng)式,如果我們把代入此多項(xiàng)式,發(fā)現(xiàn)的值為0,這時(shí)可以確定多項(xiàng)式中有因式:同理,可以確定多項(xiàng)式中有另一個(gè)因式,于是我們可以得到:.

又如:對(duì)于多項(xiàng)式,發(fā)現(xiàn)當(dāng)時(shí),的值為0,則多項(xiàng)式有一個(gè)因式,我們可以設(shè),解得,,于是我們可以得到:.

請(qǐng)你根據(jù)以上材料,解答以下問(wèn)題:

1)當(dāng) 時(shí),多項(xiàng)式的值為0,所以多項(xiàng)式有因式 ,從而因式分解 .

2)以上這種因式分解的方法叫試根法,常用來(lái)分解一些比較復(fù)雜的多項(xiàng)式.請(qǐng)你嘗試用試根法分解多項(xiàng)式:①;②.

3)小聰用試根法成功解決了以上多項(xiàng)式的因式分解,于是他猜想:

代數(shù)式有因式 , ,

所以分解因式 .

【答案】1;,;(2)①;(3,

【解析】

1)當(dāng)x=1是,多項(xiàng)式的值為0,所以可設(shè),然后求解得到m,n的值即可;

2x=1代入,得到的值為0,則可設(shè),然后根據(jù)題意求解mn的值即可;

同理利用試根法進(jìn)行求解即可;

3)當(dāng)x=2y=2x=y時(shí)都可得式子=0,根據(jù)題意可得其有因式,然后將代數(shù)式去括號(hào)化簡(jiǎn),將也去括號(hào)化簡(jiǎn)即可得到其關(guān)系.

1)當(dāng)x=1是,多項(xiàng)式=0,

,

解得m=6,n=5,

2當(dāng)x=1時(shí),多項(xiàng)式=0

,

解得m=2n=3,

當(dāng)x=12時(shí),多項(xiàng)式=0,

,

解得m=1,n=3,

3)由題意可得當(dāng)x=2y=2x=y時(shí),多項(xiàng)式=0,

有因式,

,

,

.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】大潤(rùn)發(fā)超市在銷(xiāo)售某種進(jìn)貨價(jià)為20元/件的商品時(shí),以30元/件售出,每天能售出100件.調(diào)查表明:這種商品的售價(jià)每上漲1元/件,其銷(xiāo)售量就將減少2件.

(1)為了實(shí)現(xiàn)每天1600元的銷(xiāo)售利潤(rùn),超市應(yīng)將這種商品的售價(jià)定為多少?

(2)設(shè)每件商品的售價(jià)為x元,超市所獲利潤(rùn)為y元.

①求yx之間的函數(shù)關(guān)系式;

②物價(jià)局規(guī)定該商品的售價(jià)不能超過(guò)40元/件,超市為了獲得最大的利潤(rùn),應(yīng)將該商品售價(jià)定為多少?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在同一坐標(biāo)系內(nèi),一次函數(shù)yaxb與二次函數(shù)yax28xb的圖象可能是( )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】以四邊形ABCD的邊AB,AD為邊分別向外側(cè)作等邊△ABF和等邊△ADE,連接EB,FD,交點(diǎn)為G.

(1)當(dāng)四邊形ABCD為正方形時(shí)(如圖1),EBFD的數(shù)量關(guān)系是 ;

(2)當(dāng)四邊形ABCD為矩形時(shí)(如圖2),EBFD具有怎樣的數(shù)量關(guān)系?請(qǐng)加以證明;

(3)四邊形ABCD由正方形到矩形到一般平行四邊形的變化過(guò)程中,∠EGD是否發(fā)生變化?如果改變,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知拋物線y=x2﹣4x+3x軸交于A,B兩點(diǎn),其頂點(diǎn)為C

1)對(duì)于任意實(shí)數(shù)m點(diǎn)Mm,﹣2)是否在該拋物線上?請(qǐng)說(shuō)明理由;

2)求證ABC是等腰直角三角形;

3)若點(diǎn)Dx軸上,則在拋物線上是否存在點(diǎn)P,使得PDBCPD=BC?若存在,求點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,已知菱形的邊長(zhǎng)為12, 點(diǎn)、分別是邊、上的動(dòng)點(diǎn)(不與端點(diǎn)重合),且

1)求證: 是等邊三角形;

2)點(diǎn)、在運(yùn)動(dòng)過(guò)程中,四邊形的面積是否變化,如果變化,請(qǐng)說(shuō)明理由;如果不變,請(qǐng)求出面積;

3)如圖2,連接分別與邊、交于、,當(dāng)時(shí),求證:

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】1)如圖1,ABCDCF平分∠DCE,若∠DCF30°,∠E20°,求∠ABE的度數(shù).

2)如圖2,已知ABCD,CF平分∠DCE,∠EBF2ABF,若∠F2倍與∠E的補(bǔ)角的和為190°,求∠ABE的度數(shù).

3)如圖3,若P是(2)中的射線BE上一點(diǎn),GCD上任一點(diǎn),PQGNPQ平分∠BPG,GM平分∠DGP,若∠B30°,求∠MGN的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】用一根長(zhǎng)22cm的鐵絲:

(1)能否圍成面積是30cm2的扇形?若能,求出扇形半徑;若不能,請(qǐng)說(shuō)明理由.

(2)能否圍成面積是32cm2的扇形?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一段拋物線:y=﹣x(x﹣3)(0≤x≤3),記為C1,它與x軸交于點(diǎn)O,A1;將C1繞點(diǎn)A1旋轉(zhuǎn)180°得C2,交x軸于點(diǎn)A2;將C2繞點(diǎn)A2旋轉(zhuǎn)180°得C3,交x軸于點(diǎn)A3;…如此進(jìn)行下去,直至得C17.

(1)寫(xiě)出點(diǎn)的坐標(biāo)________

(2)若P(50,m)在第17段拋物線C17上,則m=_____

查看答案和解析>>

同步練習(xí)冊(cè)答案