如圖,已知拋物線y=x-ax+a-4a-4與x軸相交于點A和點B,與y軸相交于點D(0,8),直線DC平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從C點出發(fā),沿C→D運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A→B運動,連接PQ、CB,設(shè)點P運動的時間為t秒.
(1)求a的值;(2)當四邊形ODPQ為矩形時,求這個矩形的面積;(3)當四邊形PQBC的面積等于14時,求t的值.(4)當t為何值時,△PBQ是等腰三角形?(直接寫出答案)
(1)8(2)(3)(4)
解析:解:(1)∵拋物線y=x-ax+a-4a-4經(jīng)過點(0,8)
∴a-4a-4=8
解得:a=6,a=-2(不合題意,舍去)
∴a的值為6
(2)由(1)可得拋物線的解析式為
y=x-6x+8
當y=0時,x-6x+8=0
解得:x=2,x=4
∴A點坐標為(2,0),B點坐標為(4,0)
當y=8時,
x=0或x=6
∴D點的坐標為(0,8),C點坐標為(6,8)
DP=6-2t,OQ=2+t
當四邊形OQPD為矩形時,DP=OQ
2+t=6-2t,t=,OQ=2+=
S=8×=
即矩形OQPD的面積為
(3)四邊形PQBC的面積為,當此四邊形的面積為14時,
(2-t+2t)×8=14
解得t=(秒)
當t=時,四邊形PQBC的面積為14
(4)過點P作PE⊥AB于E,連接PB,
當QE=BE時,△PBQ是等腰三角形,
∵CP=2t,
∴DP=6-2t,
∴BE=OB-PD=4-(6-2t)=2t-2,
∵OQ=2+t,
∴QE=PD-OQ=6-2t-(2+t)=4-3t,
∴4-3t=2t-2,
解得:t= ,
∴當t= 時,△PBQ是等腰三角形
t=時,PBQ是等腰三角形.
(1)把點D(0,8)代入拋物線y=x2-ax+a2-4a-4解方程即可解答;
(2)利用(1)中求得的拋物線,求得點A、B、C、D四點坐標,再利用矩形的判定與性質(zhì)解得即可;
(3)利用梯形的面積計算方法解決問題;
(4)只考慮PQ=PB,其他不符合實際情況,即可找到問題的答案
科目:初中數(shù)學 來源: 題型:
如圖,已知拋物線y=x-ax+a-4a-4與x軸相交于點A和點B,與y軸相交于點D(0,8),直線DC平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從C點出發(fā),沿C→D運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A→B運動,連接PQ、CB,設(shè)點P運動的時間為t秒.
(1)求a的值;
(2)當四邊形ODPQ為矩形時,求這個矩形的面積;
(3)當四邊形PQBC的面積等于14時,求t的值.
(4)當t為何值時,△PBQ是等腰三角形?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
查看答案和解析>>
科目:初中數(shù)學 來源:2012屆廣東省汕頭市潮南區(qū)中考模擬考試數(shù)學卷(帶解析) 題型:解答題
如圖,已知拋物線y=x-ax+a-4a-4與x軸相交于點A和點B,與y軸相交于點D(0,8),直線DC平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從C點出發(fā),沿C→D運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A→B運動,連接PQ、CB,設(shè)點P運動的時間為t秒.
(1)求a的值;(2)當四邊形ODPQ為矩形時,求這個矩形的面積;(3)當四邊形PQBC的面積等于14時,求t的值.(4)當t為何值時,△PBQ是等腰三角形?(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學 來源:2011-2012學年廣東省汕頭市潮南區(qū)中考模擬考試數(shù)學卷(解析版) 題型:解答題
如圖,已知拋物線y=x-ax+a-4a-4與x軸相交于點A和點B,與y軸相交于點D(0,8),直線DC平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從C點出發(fā),沿C→D運動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A→B運動,連接PQ、CB,設(shè)點P運動的時間為t秒.
(1)求a的值;(2)當四邊形ODPQ為矩形時,求這個矩形的面積;(3)當四邊形PQBC的面積等于14時,求t的值.(4)當t為何值時,△PBQ是等腰三角形?(直接寫出答案)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com