如圖,已知一動圓的圓心P在拋物線y=
1
2
x2-3x+3上運動.若⊙P半徑為1,點P的坐標為(m,n),當⊙P與x軸相交時,點P的橫坐標m的取值范圍是______.
∵圓心P在拋物線y=
1
2
x2-3x+3上運動,點P的坐標為(m,n),
∴n=
1
2
m2-3m+3,
∵⊙P半徑為1,⊙P與x軸相交,
∴|n|<1,
∴|
1
2
m2-3m+3|<1,
∴-1<
1
2
m2-3m+3<1,
1
2
m2-3m+3<1,得:3-
5
<m<3+
5
,
1
2
m2-3m+3>-1,得:m<2或m>4,
∴點P的橫坐標m的取值范圍是:3-
5
<m<2或4<m<3+
5

故答案為:3-
5
<m<2或4<m<3+
5
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源:不詳 題型:解答題

在直角坐標系中,⊙A的半徑為4,A的坐標為(2,0),⊙A與x軸交于E,F(xiàn)兩點,與y軸交于C、D兩點,過C點作⊙A的切線BC交x軸于B
(1)求直線BC的解析式;
(2)若拋物線y=ax2+bx+c的頂點在直線BC上,與x軸的交點恰為⊙A與x軸的交點,求拋物線的解析式;
(3)問C點是否在所求的拋物線上?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,拋物線與x軸交于點(-1,0)和(3,0),與y軸交于點(0,-3)則此拋物線對此函數(shù)的表達式為( 。
A.y=x2+2x+3B.y=x2-2x-3C.y=x2-2x+3D.y=x2+2x-3

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

甲、乙兩人進行羽毛球比賽,甲發(fā)出一顆十分關(guān)鍵的球,出手點為P,羽毛球飛行的水平距離s(米)與其距地面高度h(米)之間的關(guān)系式為h=-
1
12
s2+
2
3
s+
3
2
.如圖,已知球網(wǎng)AB距原點5米,乙(用線段CD表示)扣球的最大高度為
9
4
米,設(shè)乙的起跳點C的橫坐標為m,若乙原地起跳,因球的高度高于乙扣球的最大高度而導致接球失敗,則m的取值范圍是(  )
A.5<m<9B.5<m<4+
7
C.4<m<8+
7
D.5<m<4-
7

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,一邊靠校園圍墻,其他三邊用總長為40米的鐵欄桿圍成一個矩形花圃,設(shè)矩形ABCD的邊AB為x米,面積為S平方米,要使矩形ABCD面積最大,則x的長為(  )
A.10米B.15米C.20米D.25米

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知二次函數(shù)y=x2+bx+c中,函數(shù)y與自變量x的部分對應(yīng)值如下表:
x-101234
y1052125
(1)求該二次函數(shù)的關(guān)系式;
(2)當x為何值時,y有最小值,最小值是多少?
(3)若A(m,y1),B(m+1,y2)兩點都在該函數(shù)的圖象上,試比較y1與y2的大。

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,在△ABC中,∠C=90°,AC=4,BC=2,點A、C分別在x軸、y軸上,當點A在x軸上運動時,點C隨之在y軸上運動,在運動過程中,點B到原點的最大距離是(  )
A.6B.2
6
C.2
5
D.2
2
+2

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

已知:拋物線y=-x2+4x-3與x軸相交于A、B兩點(A點在B點的左側(cè)),頂點為P.
(1)求A、B、P三點坐標;
(2)在下面的直角坐標系內(nèi)畫出此拋物線的簡圖,并根據(jù)簡圖寫出當x取何值時,函數(shù)值y大于零;
(3)確定此拋物線與直線y=-2x+6公共點的個數(shù),并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

小敏在某次投籃中,球的運動路線是拋物線y=-
1
5
x2+3.5
的一部分(如圖),若命中籃圈中心,則他與籃底的距離l是______米.

查看答案和解析>>

同步練習冊答案