已知二次函數(shù)y=x2+bx+c中,函數(shù)y與自變量x的部分對(duì)應(yīng)值如下表:
x-101234
y1052125
(1)求該二次函數(shù)的關(guān)系式;
(2)當(dāng)x為何值時(shí),y有最小值,最小值是多少?
(3)若A(m,y1),B(m+1,y2)兩點(diǎn)都在該函數(shù)的圖象上,試比較y1與y2的大小.
(1)根據(jù)題意,
當(dāng)x=0時(shí),y=5;
當(dāng)x=1時(shí),y=2;
5=c
2=1+b+c
,解得
b=-4
c=5
,
∴該二次函數(shù)關(guān)系式為y=x2-4x+5;

(2)∵y=x2-4x+5=(x-2)2+1,
∴當(dāng)x=2時(shí),y有最小值,最小值是1,

(3)∵A(m,y1),B(m+1,y2)兩點(diǎn)都在函數(shù)y=x2-4x+5的圖象上,
所以,y1=m2-4m+5,
y2=(m+1)2-4(m+1)+5=m2-2m+2,
y2-y1=(m2-2m+2)-(m2-4m+5)=2m-3,
∴①當(dāng)2m-3<0,即m<
3
2
時(shí),y1>y2;
②當(dāng)2m-3=0,即m=
3
2
時(shí),y1=y2;
③當(dāng)2m-3>0,即m>
3
2
時(shí),y1<y2
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在平面直角坐標(biāo)系中放置一直角三角板,其頂點(diǎn)為A(0,1),B(2,0),O(0,0),將此三角板繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到△A′B′O.
(1)一拋物線(xiàn)經(jīng)過(guò)點(diǎn)A′、B′、B,求該拋物線(xiàn)的解析式;
(2)設(shè)點(diǎn)P是在第一象限內(nèi)拋物線(xiàn)上的一動(dòng)點(diǎn),是否存在點(diǎn)P,使四邊形PB′A′B的面積是△A′B′O面積4倍?若存在,請(qǐng)求出P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)在(2)的條件下,試指出四邊形PB′A′B是哪種形狀的四邊形?并寫(xiě)出四邊形PB′A′B的兩條性質(zhì).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知拋物線(xiàn)y=ax2-2ax+c與y軸交于C點(diǎn),與x軸交于A、B兩點(diǎn),點(diǎn)A的坐標(biāo)是(-1,0),O是坐標(biāo)原點(diǎn),且|OC|=3|OA|
(1)求拋物線(xiàn)的函數(shù)表達(dá)式;
(2)直接寫(xiě)出直線(xiàn)BC的函數(shù)表達(dá)式;
(3)如圖1,D為y軸的負(fù)半軸上的一點(diǎn),且OD=2,以O(shè)D為邊作正方形ODEF.將正方形ODEF以每秒1個(gè)單位的速度沿x軸的正方向移動(dòng),在運(yùn)動(dòng)過(guò)程中,設(shè)正方形ODEF與△OBC重疊部分的面積為s,運(yùn)動(dòng)的時(shí)間為t秒(0<t≤2).
求:①s與t之間的函數(shù)關(guān)系式;
②在運(yùn)動(dòng)過(guò)程中,s是否存在最大值?如果存在,直接寫(xiě)出這個(gè)最大值;如果不存在,請(qǐng)說(shuō)明理由.
(4)如圖2,點(diǎn)P(1,k)在直線(xiàn)BC上,點(diǎn)M在x軸上,點(diǎn)N在拋物線(xiàn)上,是否存在以A、M、N、P為頂點(diǎn)的平行四邊形?若存在,請(qǐng)直接寫(xiě)出M點(diǎn)坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖:已知拋物線(xiàn)y1=-x2-2x+8的圖象交x軸于點(diǎn)A,B兩點(diǎn),與y軸的正半軸交于點(diǎn)C.拋物線(xiàn)y2經(jīng)過(guò)B、C兩點(diǎn)且對(duì)稱(chēng)軸為直線(xiàn)x=3.
(1)確定A、B、C三點(diǎn)的坐標(biāo);
(2)求拋物線(xiàn)y2的解析式;
(3)若過(guò)點(diǎn)(0,3)且平行于x軸的直線(xiàn)與拋物線(xiàn)y2交于M、N兩點(diǎn),以MN為一邊,拋物線(xiàn)y2上任意一點(diǎn)P(x,y)為頂點(diǎn)作平行四邊形,若平行四邊形的面積為S,寫(xiě)出S關(guān)于P點(diǎn)縱坐標(biāo)y的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖長(zhǎng)為2的線(xiàn)段PQ在x的正半軸上,從P、Q作x軸的垂線(xiàn)與拋物線(xiàn)y=x2交于點(diǎn)P′、Q′.
(1)已知P的坐標(biāo)為(k,0),求直線(xiàn)OP′的函數(shù)解析式;
(2)若直線(xiàn)OP′把梯形P′PQQ′的面積二等分,求k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

利民商店經(jīng)銷(xiāo)甲、乙兩種商品.現(xiàn)有如下信息:

請(qǐng)根據(jù)以上信息,解答下列問(wèn)題:
(1)甲、乙兩種商品的進(jìn)貨單價(jià)各多少元?
(2)該商店平均每天賣(mài)出甲商品500件和乙商品300件.經(jīng)調(diào)查發(fā)現(xiàn),甲、乙兩種商品零售單價(jià)分別每降0.1元,這兩種商品每天可各多銷(xiāo)售100件.為了使每天獲取更大的利潤(rùn),商店決定把甲、乙兩種商品的零售單價(jià)都下降m元.在不考慮其他因素的條件下,當(dāng)m定為多少時(shí),才能使商店每天銷(xiāo)售甲、乙兩種商品獲取的利潤(rùn)最大?每天的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,已知一動(dòng)圓的圓心P在拋物線(xiàn)y=
1
2
x2-3x+3上運(yùn)動(dòng).若⊙P半徑為1,點(diǎn)P的坐標(biāo)為(m,n),當(dāng)⊙P與x軸相交時(shí),點(diǎn)P的橫坐標(biāo)m的取值范圍是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

某商場(chǎng)將進(jìn)價(jià)為1800元的電冰箱以每臺(tái)2400元售出,平均每天能售出8臺(tái),為了配合國(guó)家“家電下鄉(xiāng)”政策的實(shí)施,商場(chǎng)決定采取適當(dāng)?shù)慕祪r(jià)措施.調(diào)查表明:這種冰箱的售價(jià)每降價(jià)50元,平均每天就能多售出4臺(tái).
(1)設(shè)每臺(tái)冰箱降價(jià)x元,商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)為y元,求y與x之間的函數(shù)關(guān)系式(不要求寫(xiě)自變量的取值范圍).
(2)商場(chǎng)想在這種冰箱的銷(xiāo)售中每天盈利8000元,同時(shí)又要使顧客得到實(shí)惠,每臺(tái)冰箱應(yīng)降價(jià)多少元?
(3)每臺(tái)冰箱降價(jià)多少元時(shí),商場(chǎng)每天銷(xiāo)售這種冰箱的利潤(rùn)最高?最高利潤(rùn)是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,利用兩面夾角為135°且足夠長(zhǎng)的墻,圍成梯形圍欄ABCD,∠C=90°,新建墻BCD總長(zhǎng)為15m,則當(dāng)CD=______m時(shí),梯形圍欄的面積最大.

查看答案和解析>>

同步練習(xí)冊(cè)答案