如圖,拋物線y=ax2+bx+4與x軸交于A(-2,0)、B(4、0)兩點(diǎn),與y軸交于C點(diǎn).
(1)求拋物線的解析式;
(2)T是拋物線對(duì)稱軸上的一點(diǎn),且△ATC是以AC為底的等腰三角形,求點(diǎn)T的坐標(biāo);
(3)M、Q兩點(diǎn)分別從A、B點(diǎn)以每秒1個(gè)單位長度的速度沿x軸同時(shí)出發(fā)相向而行,當(dāng)點(diǎn)M到原點(diǎn)時(shí),點(diǎn)Q立刻掉頭并以每秒
32
個(gè)單位長度的速度向點(diǎn)B方向移動(dòng),當(dāng)點(diǎn)M到達(dá)拋物線的對(duì)稱軸時(shí),兩點(diǎn)停止運(yùn)動(dòng),過點(diǎn)M的直線l⊥精英家教網(wǎng)x軸交AC或BC于點(diǎn)P.求點(diǎn)M的運(yùn)動(dòng)時(shí)間t與△APQ面積S的函數(shù)關(guān)系式,并求出S的最大值.
分析:(1)把A、B的坐標(biāo)代入拋物線的解析式得到方程組,求出方程組的解即可;
(2)設(shè)直線x=1上一點(diǎn)T(1,h),連接TC、TA,作CE⊥直線x=1,垂足是E,根據(jù)TA=TC由勾股定理求出即可;
(3)(I)當(dāng)0<t≤2時(shí),△AMP∽△AOC,推出比例式,求出PM,AQ,根據(jù)三角形的面積公式求出即可;
(II)當(dāng)2<t≤3時(shí),作PM⊥x軸于M,PF⊥y軸于點(diǎn)F,表示出三角形APQ的面積,利用配方法求出最值即可.
解答:解:(1)把A(-2,0),B(4,0)代入y=ax2+bx+4得:
4a-2b+4=0
16a+4b+4=0

解得:a=-
1
2
,b=1,
∴拋物線的解析式是:y=-
1
2
x2+x+4,
答:拋物線的解析式是y=-
1
2
x2+x+4.

(2)由y=-
1
2
x2+x+4=-
1
2
(x-1)2+
9
2
,得拋物線的對(duì)稱軸為直線x=1,
直線x=1交x軸于點(diǎn)D,設(shè)直線x=1上一點(diǎn)T(1,h),精英家教網(wǎng)
連接TC、TA,作CE⊥直線x=1,垂足是E,
由C(0,4)得點(diǎn)E(1,4),
在Rt△ADT和Rt△TEC中,由TA=TC得32+h2=12+(4-h)2
∴h=1,
∴T的坐標(biāo)是(1,1),
答:點(diǎn)T的坐標(biāo)是(1,1).

(3)(I)當(dāng)0<t≤2時(shí),△AMP∽△AOC,
PM
CO
=
AM
AO
,PM=2t,
AQ=6-t,
∴S=
1
2
PM•AQ=
1
2
×2t(6-t)=-t2+6t=-(t-3)2+9,
當(dāng)t=2時(shí)S的最大值為8;
(II)當(dāng)2<t≤3時(shí),
作PM⊥x軸于M,作PF⊥y軸于點(diǎn)F,
精英家教網(wǎng)
則△COB∽△CFP,
又∵CO=OB,
∴FP=FC=t-2,PM=4-(t-2)=6-t,AQ=4+
3
2
(t-2)=
3
2
t+1,
∴S=
1
2
PM•AQ=
1
2
(6-t)(
3
2
t+1)=-
3
4
t2+4t+3=-
3
4
(t-
8
3
2+
25
3
,
當(dāng)t=
8
3
時(shí),S最大值為
25
3
,
綜合(I)(II)S的最大值為
25
3
,
答:點(diǎn)M的運(yùn)動(dòng)時(shí)間t與△APQ面積S的函數(shù)關(guān)系式是S=-t2+6t(0<t≤2),S=
3
2
t2+4t(2<t≤3),S的最大值是
25
3
點(diǎn)評(píng):本題主要考查對(duì)解二元一次方程組,用待定系數(shù)法求二次函數(shù)的解析式,三角形的面積,二次函數(shù)的最值等知識(shí)點(diǎn)的連接和掌握,能綜合運(yùn)用這些性質(zhì)進(jìn)行計(jì)算是解此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

8、如圖,直線y=ax+b與拋物線y=ax2+bx+c的圖象在同一坐標(biāo)系中可能是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y1=-ax2-ax+1經(jīng)過點(diǎn)P(-
1
2
,
9
8
),且與拋物線y2=ax2-ax-1相交于A,B兩點(diǎn).
(1)求a值;
(2)設(shè)y1=-ax2-ax+1與x軸分別交于M,N兩點(diǎn)(點(diǎn)M在點(diǎn)N的左邊),y2=ax2-ax-1與x軸分別交于E,F(xiàn)兩點(diǎn)(點(diǎn)E在點(diǎn)F的左邊),觀察M,N,E,F(xiàn)四點(diǎn)的坐標(biāo),寫出一條正確的結(jié)論,并通過計(jì)算說明;
(3)設(shè)A,B兩點(diǎn)的橫坐標(biāo)分別記為xA,xB,若在x軸上有一動(dòng)點(diǎn)Q(x,0),且xA≤x≤xB,過Q作一條垂直于x軸的直線,與兩條拋物線分別交于C,D精英家教網(wǎng)兩點(diǎn),試問當(dāng)x為何值時(shí),線段CD有最大值,其最大值為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,拋物線y=-ax2+ax+6a交x軸負(fù)半軸于點(diǎn)A,交x軸正半軸于點(diǎn)B,交y軸正半軸于點(diǎn)D,精英家教網(wǎng)O為坐標(biāo)原點(diǎn),拋物線上一點(diǎn)C的橫坐標(biāo)為1.
(1)求A,B兩點(diǎn)的坐標(biāo);
(2)求證:四邊形ABCD的等腰梯形;
(3)如果∠CAB=∠ADO,求α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線的頂點(diǎn)為點(diǎn)D,與y軸相交于點(diǎn)A,直線y=ax+3與y軸也交于點(diǎn)A,矩形ABCO的頂點(diǎn)B在精英家教網(wǎng)此拋物線上,矩形面積為12,
(1)求該拋物線的對(duì)稱軸;
(2)⊙P是經(jīng)過A、B兩點(diǎn)的一個(gè)動(dòng)圓,當(dāng)⊙P與y軸相交,且在y軸上兩交點(diǎn)的距離為4時(shí),求圓心P的坐標(biāo);
(3)若線段DO與AB交于點(diǎn)E,以點(diǎn)D、A、E為頂點(diǎn)的三角形是否有可能與以點(diǎn)D、O、A為頂點(diǎn)的三角形相似,如果有可能,請(qǐng)求出點(diǎn)D坐標(biāo)及拋物線解析式;如果不可能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:如圖,拋物線y=ax2+ax+c與y軸交于點(diǎn)C(0,-2),精英家教網(wǎng)與x軸交于點(diǎn)A、B,點(diǎn)A的坐標(biāo)為(-2,0).
(1)求該拋物線的解析式;
(2)M是線段OB上一動(dòng)點(diǎn),N是線段OC上一動(dòng)點(diǎn),且ON=2OM,分別連接MC、MN.當(dāng)△MNC的面積最大時(shí),求點(diǎn)M、N的坐標(biāo);
(3)若平行于x軸的動(dòng)直線與該拋物線交于點(diǎn)P,與線段AC交于點(diǎn)F,點(diǎn)D的坐標(biāo)為(-1,0).問:是否存在直線l,使得△ODF是等腰三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案