在數(shù)學中,為了簡便,記
n
k=1
k=1+2+3+…+(n-1)+n
.1!=1,2!=2×1,3!=3×2×1,…,n!=n×(n-1)×(n-2)×…×3×2×1.則
2010
k=1
k-
2011
k=1
k+
2011!
2010!
=
 
分析:根據(jù)給出的運算規(guī)律將原式轉化為有理數(shù)混合運算,再根據(jù)其運算順序和法則分別進行計算即可.
解答:解:∵
n
k=1
k=1+2+3+…+(n-1)+n
,n!=n×(n-1)×(n-2)×…×3×2×1,
2010
k=1
k-
2011
k=1
k+
2011!
2010!

=(1+2+3…+2008+2009+2010)-(1+2+3+…+2009+2010+2011)+
2011×2010×2009…×3×2×1
2010×2009×2008…×3×2×1
,
=1+2+3…+2008+2009+2010-1-2-3-…-2009-2010-2011+2011,
=0.
故答案為:0.
點評:本題主要考查了有理數(shù)的混合運算,在解題時要注意找出規(guī)律列出式子計算是解本題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

在數(shù)學中,為了簡便,記:
n
k=1
k
=1+2+3+…+(n-1)+n,1!=1,2!=2×1,3!=3×2×1…n!=n×(n-1)(n-2)…×3×2×1,則
2006
k=1
k-
2007
k=1
k+
2007!
2006!
=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在數(shù)學中,為了簡便,記
n
k=1
k=1+2+3+…+(n-1)+n
,
10
k=1
((x+k))
=(x+1)+(x+2)+…+(x+10).
(1)請你用以上記法表示:1+2+3+…+2008=
 
;
(2)化簡:
10
k=1
(x-k)
;
(3)化簡:
2008
k=1
(x-k)2-
2007
k=1
(x-k)2-20082
;
(4)化簡:
3
k=1
[(x-k)(x-k-1)]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在數(shù)學中,為了簡便,記
n
k=1
k=1+2+3+…+(n-1)+n
.1!=1,2!=2×1,3!=3×2×1,…,n!=n×(n-1)×(n-2)×…×3×2×1,則
2009
k=1
k-
2010
k=1
k+
2010!
2009!
=
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在數(shù)學中,為了簡便,記
n
k=1
k
=1+2+3+…+(n-1)+n,
n
k=1
(x+k)
=(x+1)+(x+2)+…+(x+n).
(1)請你用以上記法表示:1+2+3+…+2011=
2011
k=1
k
2011
k=1
k
;
(2)化簡:
n
k=1
(x-k)
;
(3)化簡:
3
k=1
[(x-k)(x-k-1)].

查看答案和解析>>

同步練習冊答案