【題目】綜合題。
(1)計(jì)算:|﹣2|+2cos60°﹣( )0;
(2)解不等式: ﹣x>1,并將解集在數(shù)軸上表示出來(lái).
【答案】
(1)解:原式=2+2× ﹣1=2+1﹣1=2
(2)解:5x﹣1﹣3x>3,
2x>4,
x>2,
將解集表示在數(shù)軸上如下:
【解析】(1)根據(jù)實(shí)數(shù)的混合運(yùn)算順序和法則計(jì)算可得;(2)根據(jù)解一元一次不等式基本步驟:去分母、移項(xiàng)、合并同類項(xiàng)、系數(shù)化為1可得.
【考點(diǎn)精析】本題主要考查了零指數(shù)冪法則和不等式的解集在數(shù)軸上的表示的相關(guān)知識(shí)點(diǎn),需要掌握零次冪和負(fù)整數(shù)指數(shù)冪的意義: a0=1(a≠0);a-p=1/ap(a≠0,p為正整數(shù));不等式的解集可以在數(shù)軸上表示,分三步進(jìn)行:①畫(huà)數(shù)軸②定界點(diǎn)③定方向.規(guī)律:用數(shù)軸表示不等式的解集,應(yīng)記住下面的規(guī)律:大于向右畫(huà),小于向左畫(huà),等于用實(shí)心圓點(diǎn),不等于用空心圓圈才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,數(shù)軸上有A、B、C三個(gè)點(diǎn),它們表示的數(shù)分別是、、。
(1)填空:AB= ,BC= ;
(2)現(xiàn)有動(dòng)點(diǎn)M、N都從A點(diǎn)出發(fā),點(diǎn)M以每秒2個(gè)單位長(zhǎng)度的速度向右移動(dòng),當(dāng)點(diǎn)M移動(dòng)到B點(diǎn)時(shí),點(diǎn)N才從A點(diǎn)出發(fā),并以每秒3個(gè)單位長(zhǎng)度的速度向右移動(dòng),求點(diǎn)N移動(dòng)多少時(shí)間,點(diǎn)N追上點(diǎn)M?
(3)若點(diǎn)A以每秒1個(gè)單位長(zhǎng)度的速度向左運(yùn)動(dòng),同時(shí),點(diǎn)B和點(diǎn)C分別以每秒3個(gè)單位長(zhǎng)度和7個(gè)單位長(zhǎng)度的速度向右運(yùn)動(dòng)。試探索:BC-AB的值是否隨著時(shí)間的變化而改變?請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙O是△ABC的外接圓,AB是直徑,作OD∥BC與過(guò)點(diǎn)A的切線交于點(diǎn)D,連接DC并延長(zhǎng)交AB的延長(zhǎng)線于點(diǎn)E.
(1)判斷DE與⊙O的位置關(guān)系,并證明你的結(jié)論;
(2)若AE=6,CE=2 . ①求⊙O的半徑
②求線段CE,BE與劣弧 所圍成的圖形的面積(結(jié)果保留根號(hào)和π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),拋物線y=ax2+bx+3交y軸于點(diǎn)A,交x軸正半軸于點(diǎn)C(3,0),交x軸負(fù)半軸于點(diǎn)B(﹣1,0),∠ACB=45°.
(1)求此拋物線的解析式;
(2)點(diǎn)D為線段AC上一點(diǎn),且AD=2CD,過(guò)點(diǎn)D作DE∥y軸,交拋物線一點(diǎn)E,點(diǎn)P為x軸上方拋物線的一點(diǎn),設(shè)點(diǎn)P的橫坐標(biāo)為t,△PDE的面積為s,求s與t之間的函數(shù)關(guān)系式,并直接寫(xiě)出t的范圍;
(3)在(2)的條件下,過(guò)點(diǎn)P作PF∥DE交直線AC于點(diǎn)F,是否存在點(diǎn)P,使以點(diǎn)P、F、E、D為頂點(diǎn)的平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一塊長(zhǎng)(3a+b)米,寬(2a+b)米的長(zhǎng)方形廣場(chǎng),園林部門(mén)要對(duì)陰影區(qū)域進(jìn)行綠化,空白區(qū)域進(jìn)行廣場(chǎng)硬化,其中,四個(gè)角部分是半徑為(a﹣b)米的四個(gè)大小相同的扇形,中間部分是邊長(zhǎng)為(a+b)米的正方形.
(1)用含a、b的式子表示需要硬化部分的面積;
(2)若a=30,b=10,求出硬化部分的面積(結(jié)果保留π的形式).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的三個(gè)頂點(diǎn)的坐標(biāo)為A(-2,1),B(-4,-3),C(0,-1).
(1)若點(diǎn)A平移后的對(duì)稱點(diǎn)為A′(2,4),請(qǐng)?jiān)谧鴺?biāo)系中畫(huà)出△ABC作同樣的平移后得到的△A'B′C,并寫(xiě)出另兩點(diǎn)B′,C′的對(duì)稱點(diǎn)的坐標(biāo);
(2)△ABC經(jīng)過(guò)怎樣的平移得到△A′B′C′?;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)O是邊AC上一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)O作直線EF∥BC分別交∠ACB、外角∠ACD的平分線于點(diǎn)E,F(xiàn).
(1)若CE=4,CF=3,求OC的長(zhǎng).
(2)連接AE、AF,問(wèn)當(dāng)點(diǎn)O在邊AC上運(yùn)動(dòng)到什么位置時(shí),四邊形AECF是矩形?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A(a,0)(a>0),B(2,3),C(0,3).過(guò)原點(diǎn)O作直線l,使它經(jīng)過(guò)第一、三象限,直線l與y軸的正半軸所成角設(shè)為θ,將四邊形OABC的直角∠OCB沿直線l折疊,點(diǎn)C落在點(diǎn)D處,我們把這個(gè)操作過(guò)程記為FZ[θ,a].
(1)若點(diǎn)D與點(diǎn)A重合,則這個(gè)操作過(guò)程為FZ[ , ];
(2)若點(diǎn)D恰為AB的中點(diǎn)(如圖2),求θ;
(3)經(jīng)過(guò)FZ[45°,a]操作,點(diǎn)B落在點(diǎn)E處,若點(diǎn)E在四邊形0ABC的邊AB上,求出a的值;若點(diǎn)E落在四邊形0ABC的外部,直接寫(xiě)出a的取值范圍;
(4)經(jīng)過(guò)FZ[θ,a]操作后,作直線CD交x軸于點(diǎn)G,交直線AB于點(diǎn)H,使得△ODG與△GAH是一對(duì)相似的等腰三角形,直接寫(xiě)出FZ[θ,a].
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,點(diǎn)E在AC上,∠AEB=∠ABC.
(1)圖1中,作∠BAC的角平分線AD,分別交CB、BE于D、F兩點(diǎn),求證:∠EFD=∠ADC;
(2)圖2中,作△ABC的外角∠BAG的角平分線AD,分別交CB、BE的延長(zhǎng)線于D、F兩點(diǎn),試探究(1)中結(jié)論是否仍成立?為什么?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com