【題目】用指定的方法解下列方程:

14x12360(直接開平方法);

22x25x+10 (配方法)

3)(x+1)(x2)=4(公式法);

42x+1)﹣xx+1)=0(因式分解法)

【答案】1x1=4,x2=-2;(2x1=x2=;(3x1=3x2=-2;(4x1=-1,x2=2

【解析】

1)方程變形后,利用平方根的定義開方即可求出解;

2)方程常數(shù)項移到右邊,兩邊加上一次項系數(shù)一半的平方,左邊化為完全平方式,右邊合并,開方即可求出解;

3)方程整理為一般形式,找出a,b,c的值,當根的判別式大于等于0時,代入求根公式即可求出解;

4)方程左邊提取公因式化為積的形式,然后利用兩數(shù)相乘積為0,兩因式中至少有一個為0轉化為兩個一元一次方程來求解.

1)方程變形得:(x-12=9,

開方得:x-1=3x-1=-3

解得:x1=4,x2=-2

2)方程變形得:x2-x=-,

配方得:x2-x+=x-2=,

開方得:x-

x1=,x2=

3)方程整理得:x2-x-6=0,

這里a=1,b=-1,c=-6,

∵△=1+24=25,

x=,

x1=3x2=-2;

4)分解因式得:(x+1)(2-x=0,

解得:x1=-1,x2=2

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD的對角線AC,BD相交于點O,點EBD上由點B向點D運動(點E不與點B重合),連接AE,將線段AE繞點A逆時針旋轉90得到線段AF,連接BFAO于點G.設BE的長為x,OG的長為y,下列圖象中大致反映yx之間的函數(shù)關系的是( 。

A. B.

C. D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】綜合與探究

如圖,已知拋物線y=﹣x22x+3x軸交于A,B兩點(點A在點B的左側),與y軸交于點C.其頂點為D,對稱軸是直線l,且與x軸交于點H

1)求點A,B,C,D的坐標;

2)若點P是該拋物線對稱軸l上的﹣個動點,求△PBC周長的最小值;

3)若點E是線段AC上的一個動點(EAC不重合),過點Ex軸的垂線,與拋物線交于點F,與x軸交于點G.則在點E運動的過程中,是否存在EF2EG?若存在,求出此時點E的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中,,點沿邊以的速度從點向點移動,同時點沿邊以的速度從點向點移動.若以點、、構成的三角形與相似,則運動時間為_____秒.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知x1,x2是關于x的一元二次方程x22(m3) xm210的兩個根.

1)當m取何值時,方程有兩個不相等的實數(shù)根?

2)若以x1,x2為對角線的菱形邊長是,試求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某廣告公司設計一幅周長為16米的矩形廣告牌,廣告設計費為每平方米2000元.設矩形一邊長為x,面積為S平方米.

(1)求S與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;

(2)設計費能達到24000元嗎?為什么?

(3)當x是多少米時,設計費最多?最多是多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形的對角線軸上,若菱形的周長為,點的坐標為,反比例函數(shù)的圖象經過點

(1)求該反比例函數(shù)的解析式;

(2)若點是反比例函數(shù)上的一點,且的面積恰好等于菱形的面積,求點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車分別從A、B兩地同時出發(fā),在同一條公路上,勻速行駛,相向而行,到兩車相遇時停止.甲車行駛一段時間后,因故停車0.5小時,故障解除后,繼續(xù)以原速向B地行駛,兩車之間的路程y(千米)與出發(fā)后所用時間x(小時)之間的函數(shù)關系如圖所示.

1)求甲、乙兩車行駛的速度VV.

2)求m的值.

3)若甲車沒有故障停車,求可以提前多長時間兩車相遇.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】. 在一個不透明的布袋中裝有三個小球,小球上分別標有數(shù)字﹣1、02,它們除了數(shù)字不同外,其他都完全相同.

1)隨機地從布袋中摸出一個小球,則摸出的球為標有數(shù)字2的小球的概率為 ;

2)小麗先從布袋中隨機摸出一個小球,記下數(shù)字作為平面直角坐標系內點M的橫坐標.再將此球放回、攪勻,然后由小華再從布袋中隨機摸出一個小球,記下數(shù)字作為平面直角坐標系內點M的縱坐標,請用樹狀圖或表格列出點M所有可能的坐標,并求出點M落在如圖所示的正方形網格內(包括邊界)的概率.

查看答案和解析>>

同步練習冊答案