【題目】如圖,BD是四邊形ABCD的對(duì)角線(xiàn),AB=BC=6,∠ABC=60°,點(diǎn)G1、G2分別是△ABD和△DBC的重心,則點(diǎn)G1、G2間的距離為_____.
【答案】2
【解析】
取BD的中點(diǎn)G,連接AG,CG,AC,根據(jù)點(diǎn)G1、G2分別是△ABD和△DBC的重心,得到G1在AG上,G2在CG上,求得==,根據(jù)相似三角形的性質(zhì)得到==,根據(jù)已知條件得到△ABC是等邊三角形,求得AC=6,于是得到結(jié)論.
解:取BD的中點(diǎn)G,連接AG,CG,AC,
∵點(diǎn)G1、G2分別是△ABD和△DBC的重心,
∴G1在AG上,G2在CG上,
∴==,
∵∠AGC=∠AGC,
∴△GG1G2∽△GAC,
∴==,
∵AB=BC=6,∠ABC=60°,
∴△ABC是等邊三角形,
∴AC=6,
∴G1G2=2,
故答案為:2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線(xiàn)y=2x+6與反比例函數(shù)的圖象交于點(diǎn)A(1,m),與x軸交于點(diǎn)B,平行于x軸的直線(xiàn)y=n(0<n<6)交反比例函數(shù)的圖象于點(diǎn)M,交AB于點(diǎn)N,連接BM.
(1)求m的值和反比例函數(shù)的表達(dá)式;
(2)觀察圖象,直接寫(xiě)出當(dāng)x>0時(shí),不等式2x+6-<0的解集;
(3)當(dāng)n為何值時(shí),△BMN的面積最大?最大值是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一組正方形按如圖所示放置,其中頂點(diǎn)B1在y軸上,頂點(diǎn)C1,E1,E2,C2,E3,E4,C3…在x軸上.已知正方形A1B1C1D1的邊長(zhǎng)為1,∠B1C1O=60°,B1C1∥B2C2∥B3C3,則正方形A2019B2019C2019D2019的邊長(zhǎng)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小強(qiáng)從A處出發(fā)沿北偏東70°方向行走,走至B處,又沿著北偏西30°方向行走至C處,此時(shí)需把方向調(diào)整到與出發(fā)時(shí)一致,則方向的調(diào)整應(yīng)是( 。
A. 左轉(zhuǎn) 80° B. 右轉(zhuǎn)80° C. 右轉(zhuǎn) 100° D. 左轉(zhuǎn) 100°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知AB是⊙O的直徑,PC切⊙O于點(diǎn)P,過(guò)A作直線(xiàn)AC⊥PC交⊙O于另一點(diǎn)D,連接PA、PB.
(1)求證:AP平分∠CAB;
(2)若P是直徑AB上方半圓弧上一動(dòng)點(diǎn),⊙O的半徑為2,則
①當(dāng)弦AP的長(zhǎng)是_____時(shí),以A,O,P,C為頂點(diǎn)的四邊形是正方形;
②當(dāng)的長(zhǎng)度是______時(shí),以A,D,O,P為頂點(diǎn)的四邊形是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=﹣x2+bx+c與x軸交于A(﹣1,0)和B(3,0),與y軸交于C點(diǎn),點(diǎn)C關(guān)于拋物線(xiàn)的對(duì)稱(chēng)軸的對(duì)稱(chēng)點(diǎn)為點(diǎn)D.拋物線(xiàn)頂點(diǎn)為H.
(1)求拋物線(xiàn)的解析式.
(2)當(dāng)點(diǎn)E在拋物線(xiàn)的對(duì)稱(chēng)軸上運(yùn)動(dòng)時(shí),在直線(xiàn)AD上是否存在點(diǎn)F,使得以點(diǎn)A、C、E、F為頂點(diǎn)的四邊形為平行四邊形?若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(3)點(diǎn)P為直線(xiàn)AD上方拋物線(xiàn)的對(duì)稱(chēng)軸上一動(dòng)點(diǎn),連接PA,PD.當(dāng)S△PAD=3,若在x軸上存在以動(dòng)點(diǎn)Q,使PQ+QB最小,若存在,請(qǐng)直接寫(xiě)出此時(shí)點(diǎn)Q的坐標(biāo)及PQ+QB的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,△ABC內(nèi)接于⊙O,AB是⊙O的直徑,點(diǎn)D在⊙O上,過(guò)點(diǎn)C的切線(xiàn)交AD的延長(zhǎng)線(xiàn)于點(diǎn)E,且AE⊥CE,連接CD.
(1)求證:DC=BC;
(2)若AB=5,AC=4,求tan∠DCE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在Rt△OAB中,∠AOB=90°,OA=OB=4,以點(diǎn)O為圓心、2為半徑畫(huà)圓,點(diǎn)C是⊙O上任意一點(diǎn),連接BC,OC.將OC繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)90°,交⊙O于點(diǎn)D,連接AD.
(1)當(dāng)AD與⊙O相切時(shí),
①求證:BC是⊙O的切線(xiàn);
②求點(diǎn)C到OB的距離.
(2)連接BD,CD,當(dāng)△BCD的面積最大時(shí),點(diǎn)B到CD的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=ax2+bx(a>0)過(guò)點(diǎn)E(8,0),矩形ABCD的邊AB在線(xiàn)段OE上(點(diǎn)A在點(diǎn)B的左側(cè)),點(diǎn)C、D在拋物線(xiàn)上,∠BAD的平分線(xiàn)AM交BC于點(diǎn)M,點(diǎn)N是CD的中點(diǎn),已知OA=2,且OA:AD=1:3.
(1)求拋物線(xiàn)的解析式;
(2)F、G分別為x軸,y軸上的動(dòng)點(diǎn),順次連接M、N、G、F構(gòu)成四邊形MNGF,求四邊形MNGF周長(zhǎng)的最小值;
(3)在x軸下方且在拋物線(xiàn)上是否存在點(diǎn)P,使△ODP中OD邊上的高為?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(4)矩形ABCD不動(dòng),將拋物線(xiàn)向右平移,當(dāng)平移后的拋物線(xiàn)與矩形的邊有兩個(gè)交點(diǎn)K、L,且直線(xiàn)KL平分矩形的面積時(shí),求拋物線(xiàn)平移的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com