【題目】小王騎車從甲地到乙地,小李騎車從乙地到甲地,兩人同時出發(fā),沿同一條公路勻速前進,在出發(fā)2 h時,兩人相距36 km,在出發(fā)3 h時,兩人相遇.設騎行的時間為x(h),兩人之間的距離為y(km),圖中的線段AB表示兩人從出發(fā)到相遇這個過程中y與x之間的函數(shù)關系.
(1)求線段AB所表示的y與x之間的函數(shù)表達式;
(2)求甲、乙兩地之間的距離.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AD是△ABC的中線,E,F(xiàn)分別是AD和AD延長線上的點,且DE=DF,連結BF,CE.下列說法:①△ABD和△ACD面積相等;②∠BAD=∠CAD;③△BDF≌△CDE;④BF∥CE;其中正確的有( 。
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB是⊙O的直徑,點C,D是半圓O的三等分點,過點C作⊙O的切線交AD的延長線于點E,過點D作DF⊥AB于點F,交⊙O于點H,連接DC,AC.
(1)求證:∠AEC=90°;
(2)試判斷以點A,O,C,D為頂點的四邊形的形狀,并說明理由;
(3)若DC=2,求DH的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=kx+b的圖象經過點A(﹣2,6),且與x軸相交于點B,與正比例函數(shù)y=3x的圖象相交于點C,點C的橫坐標為1.
(1)求k、b的值;
(2)若點D在y軸負半軸上,且滿足S△COD=S△BOC,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料,根據材料回答:
例如1:
.
例如2:
8×0.125=8×8×8×8×8×8×0.125×0.125×0.125×0.125×0.125×0.125
=(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)×(8×0.125)
=(8×0.125)6 =1.
(1)仿照上面材料的計算方法計算:;
(2)由上面的計算可總結出一個規(guī)律:(用字母表示) ;
(3)用(2)的規(guī)律計算:.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】2019年618年中大促活動中,各大電商分期進行降價促銷.某寶店鋪熱銷網紅A款服裝進行價格促銷,促銷價比平時售價每件降90元,如果賣出相同數(shù)量的A款服裝,平時銷售額為5萬元,促銷后銷售額只有4萬元.
(1)該店鋪A款服裝平時每件售價為多少元?
(2)該店鋪在6.1—6.2第一輪促銷中,A款服裝的銷售情況非;鸨碳覜Q定為第二輪6.16—6.18大促再進一批貨,經銷A款的同時再購進同品牌的B款服裝,己知A款服裝每件進價為300元,B款服裝每件進價為200元,店鋪預計用不少于7.2萬元且不多于7.3萬元的資金購進這兩款服裝共300件.請你算一算,商家共有幾種進貨方案?
(3)在6.16—6.18促銷活動中,A款仍以平日價降90元促銷,B款服裝每件售價為280元,為打開B款服裝的銷路,店鋪決定每售出一件B款服裝,返還顧客現(xiàn)金元,要使(2)中所購進服裝全部售完后所有方案獲利相同,的值應是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD是平行四邊形,△AB'C和△ABC關于AC所在的直線對稱,AD和B'C相交于點O,連接BB'
(1)請直接寫出圖中所有的等腰三角形(不添加字母);
(2)求證:△AB'O≌△CDO
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義:若△ABC中,其中一個內角是另一個內角的一半,則稱△ABC為“半角三角形”.根據此定義,完成下面各題:
(1)若△ABC為半角三角形,且∠A=90°,則△ABC中其余兩個角的度數(shù)為 ;
(2)若△ABC是半角三角形,且∠C=40°,則∠B ;
(3)如圖,在四邊形ABCD中,AB∥CD,AD∥BC,∠C=72°,點E在邊CD上,以BE為折痕,將△BCE向上翻折,點C恰好落在AD邊上的點F,若BF⊥AD,則△EDF是半角三角形嗎?若是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在2018春季環(huán)境整治活動中,某社區(qū)計劃對面積為1600m2的區(qū)域進行綠化.經投標,由甲、乙兩個工程隊來完成,若甲隊每天能完成綠化的面積是乙隊每天能完成綠化面積的2倍,并且在獨立完成面積為400m2區(qū)域的綠化時,甲隊比乙隊少用5天.
(1)求甲、乙兩工程隊每天能完成綠化的面積;
(2)設甲工程隊施工x天,乙工程隊施工y天,剛好完成綠化任務,求y關于x的函數(shù)關系式;
(3)若甲隊每天綠化費用是0.6萬元,乙隊每天綠化費用為0.25萬元,且甲乙兩隊施工的總天數(shù)不超過25天,則如何安排甲乙兩隊施工的天數(shù),使施工總費用最低?并求出最低費用.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com