【題目】已知拋物線y=﹣x2+2kx﹣k2+k+3(k為常數(shù))的頂點(diǎn)縱坐標(biāo)為4.
(1)求k的值;
(2)設(shè)拋物線與直線y=﹣(x﹣3)(m≠0)兩交點(diǎn)的橫坐標(biāo)為x1,x2,n=x1+x2﹣2,若A(1,a),B(b,)兩點(diǎn)在動(dòng)點(diǎn)M(m,n)所形成的曲線上,求直線AB的解析式;
(3)將(2)中的直線AB繞點(diǎn)(3,0)順時(shí)針旋轉(zhuǎn)45°,與拋物線x軸上方的部分相交于點(diǎn)C,請(qǐng)直接寫(xiě)出點(diǎn)C的坐標(biāo).
【答案】(1)1;(2);(3)(2,3).
【解析】
(1)利用配方法即可解決問(wèn)題;
(2)由題意,方程-x2+2x+3=-(x-3)的兩實(shí)數(shù)根分別為x1,x2,整理得,,推出x1+x2=+2,由n=x1+x2﹣2,推出n=+2-2=,即動(dòng)點(diǎn)M(m,n)所形成的曲線為y=,由A(1,a),B(b,)兩點(diǎn)在該曲線上,推出A(1,1),B(2,),再利用待定系數(shù)法即可解決問(wèn)題;
(3)由直線AB的解析式為y=﹣x+,A(1,1),推出點(diǎn)D(3,0)在直線AB上,取點(diǎn)E(2,3),則AE=AD=,ED=,推出AE2+AD2=ED2,推出∠EAD=90°,由AE=AD,推出∠ADE=45°,可得直線ED的解析式為y=﹣3x+9,構(gòu)建方程組即可求出點(diǎn)C坐標(biāo).
(1)y=﹣x2+2kx﹣k2+k+3=﹣(x﹣k)2+k+3,
∵頂點(diǎn)縱坐標(biāo)為4,
∴k+3=4,
∴k=1;
(2)∵k=1,
∴拋物線為y=﹣x2+2x+3,
由題意,方程-x2+2x+3=-(x-3)的兩實(shí)數(shù)根分別為x1,x2,
整理得,,
∴x1+x2=+2,
∵n=x1+x2﹣2,
∴n=+2-2=,
即動(dòng)點(diǎn)M(m,n)所形成的曲線為y=,
∵A(1,a),B(b,)兩點(diǎn)在該曲線上,
∴A(1,1),B(2,),
設(shè)直線AB解析式為y=k'x+b',把A(1,1),B(2,)代入得,,
解得,
∴直線AB的解析式為y=﹣x+;
(3)如圖,
∵直線AB的解析式為y=﹣x+,A(1,1),
∴點(diǎn)D(3,0)在直線AB上,
取點(diǎn)E(2,3),則AE=AD=,ED=,
∴AE2+AD2=ED2,
∴∠EAD=90°,
∵AE=AD,
∴∠ADE=45°,
∵設(shè)直線DE解析式為y=k″x+b″,把D(3,0),E(2,3)代入得,,
解得,
∴直線ED的解析式為y=﹣3x+9,
由,解得或,
∵D(3,0),
∴C(2,3).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)和,以下說(shuō)法:
①它們的圖象都是開(kāi)口向上;②它們的對(duì)稱(chēng)軸都是y軸,頂點(diǎn)坐標(biāo)都是原點(diǎn)(0,0);③當(dāng)x>0時(shí),它們的函數(shù)y都是隨x的增大而增大;④它們的開(kāi)口的大小是一樣的.
其中正確的說(shuō)法有_______個(gè).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=mx+m與y=m≠0)的圖象可能是( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店以固定進(jìn)價(jià)一次性購(gòu)進(jìn)一種商品,3月份按一定售價(jià)銷(xiāo)售,銷(xiāo)售額為2400元,為擴(kuò)大銷(xiāo)量,減少庫(kù)存,4月份在3月份售價(jià)基礎(chǔ)上打9折銷(xiāo)售,結(jié)果銷(xiāo)售量增加30件,銷(xiāo)售額增加840元.
(1)求該商店3月份這種商品的售價(jià)是多少元?
(2)如果該商店3月份銷(xiāo)售這種商品的利潤(rùn)為900元,那么該商店4月份銷(xiāo)售這種商品的利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某報(bào)社為了解市民對(duì)“社會(huì)主義核心價(jià)值觀”的知曉程度,采取隨機(jī)抽樣的方式進(jìn)行問(wèn)卷調(diào)查,調(diào)查結(jié)果為“A非常了解”、“B了解”、“C基本了解”三個(gè)等級(jí),并根據(jù)調(diào)查結(jié)果制作了如下兩幅不完整的統(tǒng)計(jì)圖.
請(qǐng)根據(jù)圖中提供的信息,解答下列問(wèn)題:
(1)本次調(diào)查的人數(shù)為 ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該市約有市民100萬(wàn)人,請(qǐng)你根據(jù)抽樣調(diào)查的結(jié)果,估計(jì)該市大約有多少人對(duì)“社會(huì)主義核心價(jià)值觀”達(dá)到“A非常了解”的程度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,吊車(chē)在水平地面上吊起貨物時(shí),吊繩BC與地面保持垂直,吊臂AB與水平線的夾角為64°,吊臂底部A距地面1.5m.(計(jì)算結(jié)果精確到0.1m,參考數(shù)據(jù)sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
(1)當(dāng)?shù)醣鄣撞緼與貨物的水平距離AC為5m時(shí),吊臂AB的長(zhǎng)為多少m.
(2)如果該吊車(chē)吊臂的最大長(zhǎng)度AD為20m,那么從地面上吊起貨物的最大高度是多少?(吊鉤的長(zhǎng)度與貨物的高度忽略不計(jì))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知⊙O的半徑為10,圓心O到弦AB的距離為5,則弦AB所對(duì)的圓周角的度數(shù)是( 。
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD是矩形,將一塊正方形紙板OEFG如圖1擺放,它的頂點(diǎn)O與矩形ABCD的對(duì)角線交點(diǎn)重合,點(diǎn)A在正方形的邊OG上,現(xiàn)將正方形繞點(diǎn)O逆時(shí)針旋轉(zhuǎn),當(dāng)點(diǎn)B在OG邊上時(shí),停止旋轉(zhuǎn),在旋轉(zhuǎn)過(guò)程中OG交AB于點(diǎn)M,OE交AD于點(diǎn)N.
(1)開(kāi)始旋轉(zhuǎn)前,即在圖1中,連接NC.
①求證:NC=NA(M);
②若圖1中NA(M)=4,DN=2,請(qǐng)求出線段CD的長(zhǎng)度.
(2)在圖2(點(diǎn)B在OG上)中,請(qǐng)問(wèn)DN、AN、CD這三條線段之間有什么數(shù)量關(guān)系?寫(xiě)出結(jié)論,并說(shuō)明理由.
(3)試探究圖3中AN、DN、AM、BM這四條線段之間有什么數(shù)量關(guān)系?寫(xiě)出結(jié)論,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某飛機(jī)于空中探測(cè)某座山的高度,在點(diǎn)A處飛機(jī)的飛行高度是AF=3700米,從飛機(jī)上觀測(cè)山頂目標(biāo)C的俯角是45°,飛機(jī)繼續(xù)以相同的高度飛行300米到B處,此時(shí)觀測(cè)目標(biāo)C的俯角是50°,求這座山的高度CD.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.20).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com