如圖,在平面直角坐標(biāo)系中,二次函數(shù)y=ax2+c(a<0)的圖象過(guò)正方形ABOC的三個(gè)頂點(diǎn)A.B.C,求ac的值.

ac=﹣2.

解析試題分析:設(shè)正方形的對(duì)角線OA長(zhǎng)為2m,根據(jù)正方形的性質(zhì)則可得出B、C坐標(biāo),代入二次函數(shù)y=ax2+c中,即可求出a和c,從而求積.
試題解析:設(shè)正方形的對(duì)角線OA長(zhǎng)為2m,
則B(﹣m,m),C(m,m),A(0,2m);
把A,C的坐標(biāo)代入解析式可得:
c=2m①,am2+c=m②,
①代入②得:m2a+2m=m,解得:a=﹣,
則ac=﹣•2m=﹣2.
考點(diǎn):二次函數(shù)綜合題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線y=-x+4x+5交x軸于A、B(以A左B右)兩點(diǎn),交y軸于點(diǎn)C.

(1)求直線BC的解析式;
(2)點(diǎn)P為拋物線第一象限函數(shù)圖象上一點(diǎn),設(shè)P點(diǎn)的橫坐標(biāo)為m,△PBC的面積為S,求S與m的函數(shù)關(guān)系式;
(3)在(2)的條件下,連接AP,拋物線上是否存在這樣的點(diǎn)P,使得線段PA被BC平分,如果不存在,請(qǐng)說(shuō)明理由;如果存在,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知直線y=x+6交x軸于點(diǎn)A,交y軸于點(diǎn)C,經(jīng)過(guò)A和原點(diǎn)O的拋物線y=ax2+bx(a<0)的頂點(diǎn)B在直線AC上.

(1)求拋物線的函數(shù)關(guān)系式;
(2)以B點(diǎn)為圓心,以AB為半徑作⊙B,將⊙B沿x軸翻折得到⊙D,試判斷直線AC與⊙D的位置關(guān)系,并說(shuō)明理由;
(3)若E為⊙B優(yōu)弧上一動(dòng)點(diǎn),連結(jié)AE、OE,問(wèn)在拋物線上是否存在一點(diǎn)M,使∠MOA︰∠AEO=2︰3,若存在,試求出點(diǎn)M的坐標(biāo);若不存在,試說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知一個(gè)二次函數(shù)的頂點(diǎn)A的坐標(biāo)為(1,0),且圖像經(jīng)過(guò)點(diǎn)B(2,3).
(1)求這個(gè)二次函數(shù)的解析式.
(2)設(shè)圖像與y軸的交點(diǎn)為C,記,試用表示(直接寫出答案)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,拋物線y=x2+mx+n交x軸于A、B兩點(diǎn),交y軸于點(diǎn)C,點(diǎn)P是它的頂點(diǎn),點(diǎn)A的坐標(biāo)是(1,0),點(diǎn)B的坐標(biāo)是(﹣3,0).

(1)求m、n的值;
(2)求直線PC的解析式.
[溫馨提示:拋物線y=ax2+bx+c(a≠0)的頂點(diǎn)坐標(biāo)為(﹣,)].

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù).

(1)在給定的直角坐標(biāo)系中,畫出這個(gè)函數(shù)的圖象;
(2)根據(jù)圖象,寫出當(dāng)y<0時(shí),x的取值范圍;
(3)若將此圖象沿x軸向右平移3個(gè)單位,請(qǐng)寫出平移后圖象所對(duì)應(yīng)的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

某商店將進(jìn)價(jià)為每件80元的某種商品按每件100元出售,每天可售出100件.經(jīng)過(guò)市場(chǎng)調(diào)查,發(fā)現(xiàn)這種商品每件每降低1元,其銷售量就可增加10件.
(1)設(shè)每件商品降低售價(jià)元,則降價(jià)后每件利潤(rùn)        元,每天可售出        件(用含的代數(shù)式表示);
(2)如果商店為了每天獲得利潤(rùn)2160元,那么每件商品應(yīng)降價(jià)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

拋物線經(jīng)過(guò)點(diǎn)A(4,0),B(2,2),連結(jié)OB,AB.

(1)求、的值;
(2)求證:△OAB是等腰直角三角形;
(3)將△OAB繞點(diǎn)O按順時(shí)針?lè)较蛐D(zhuǎn)l35°得到△OA′B′,寫出A′B′的中點(diǎn)P的出標(biāo).試判斷點(diǎn)P是否在此拋物線上,并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知二次函數(shù)y=ax2+bx-3的圖象經(jīng)過(guò)點(diǎn)A(2,-3),B(-1,0). 求二次函數(shù)的解析式;

查看答案和解析>>

同步練習(xí)冊(cè)答案