【題目】在“世界家庭日”前夕,某校團委隨機抽取了n名本校學生,對“世界家庭日”當天所喜歡的家庭活動方式進行問卷調查.問卷中的家庭活動方式包括:A.在家里聚餐; B.去影院看電影; C.到公園游玩; D.進行其他活動
每位學生在問卷調查時都按要求只選擇了其中一種喜歡的活動方式,該校團委收回全部問卷后,將收集到的數(shù)據(jù)整理并繪制成如圖所示的統(tǒng)計圖,根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)求n的值;
(2)四種方式中最受學生喜歡的方式為__(用A、B、C、D作答);選擇該種方式的學生人數(shù)占被調查的學生人數(shù)的百分比為_____。
(3)根據(jù)統(tǒng)計結果,估計該校1800名學生中喜歡C方式的學生比喜歡B方式的學生多的人數(shù).
【答案】
(1)
解:n=30+40+70+60=200.
(2)
解:∵C的學生人數(shù)最多,
∴四種方式中最受學生喜歡的方式為C,
×100%=35%,
故答案為:C,35%.
(3)
解:1800×=270(人),
答:該校1800名學生中喜歡C方式的學生比喜歡B方式的學生多的人數(shù)為270人.
【解析】(1)根據(jù)條形圖,把A,B,C,D的人數(shù)加起來,即可解答;
(2)C的學生人數(shù)最多,即為四種方式中最受學生喜歡的方式;用C的人數(shù)÷總人數(shù),即可得到百分比;
(3)分別計算出喜歡C方式的學生人數(shù)、喜歡B方式的學生的人數(shù),作差即可解答.
【考點精析】認真審題,首先需要了解條形統(tǒng)計圖(能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,AB為⊙O的切線,切點為B,連接AO,AO與⊙O交于點C,BD為⊙O的直徑,連接CD.若∠A=30°,⊙O的半徑為2,則圖中陰影部分的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,D是BC的中點,AC的垂直平分線分別交AC、AD、AB于點E、O、F,則圖中全等三角形的對數(shù)是( 。
A.1對
B.2對
C.3對
D.4對
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,半徑為R,圓心角為n°的扇形面積是S扇形=,由弧長l=,得S扇形==R=lR.通過觀察,我們發(fā)現(xiàn)S扇形=lR類似于S三角形=×底×高.
類比扇形,我們探索扇環(huán)(如圖②,兩個同心圓圍成的圓環(huán)被扇形截得的一部分交作扇環(huán))的面積公式及其應用.
(1)設扇環(huán)的面積為S扇環(huán) , 的長為l1 , 的長為l2 , 線段AD的長為h(即兩個同心圓半徑R與r的差).類比S梯形=×(上底+下底)×高,用含l1 , l2 , h的代數(shù)式表示S扇環(huán) , 并證明;
(2)用一段長為40m的籬笆圍成一個如圖②所示的扇環(huán)形花園,線段AD的長h為多少時,花園的面積最大,最大面積是多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,已知AD>AB.在邊AD上取點E,使AE=AB,連結CE,過點E作EF⊥CE,與邊AB或其延長線交于點F.
猜想:如圖①,當點F在邊AB上時,線段AF與DE的大小關系為______.
探究:如圖②,當點F在邊AB的延長線上時,EF與邊BC交于點G.判斷線段AF與DE的大小關系,并加以證明.
應用:如圖②,若AB=2,AD=5,利用探究得到的結論,求線段BG的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,BD是△ABC的一條角平分線.點O、E、F分別在BD、BC、AC上,且四邊形OECF是正方形.
(1)求證:點O在∠BAC的平分線上;
(2)若AC=5,BC=12,求OE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1是“東方之星”救援打撈現(xiàn)場圖,小紅據(jù)此構造出一個如圖2所示的數(shù)學模型,已知:A、B、D三點在同一水平線上,CD⊥AD,∠A=30°,∠CBD=75°,AB=60m.
(1)求點B到AC的距離.
(2)求線段CD的長度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,把點P(﹣5,3)向右平移8個單位得到點P1 , 再將點P1繞原點旋轉90°得到點P2 , 則點P2的坐標是( 。
A.(3,﹣3)
B.(﹣3,3)
C.(3,3)或(﹣3,﹣3)
D.(3,﹣3)或(﹣3,3)
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com