【題目】如圖,在ABC,ACB=,∠B=,AC=1BC=,AB=2AC在直線l上,將ABC繞點A順時針轉(zhuǎn)到位置①可得到點P1,此時AP1=2;將位置①的三角形繞點P1順時針旋轉(zhuǎn)到位置②,可得到點P2,此時AP2=2+;將位置②的三角形繞點P2順時針旋轉(zhuǎn)到位置③,可得到點P3,此時AP3=3+,按此順序繼續(xù)旋轉(zhuǎn),得到點P2016,則AP2016=( )

A. 2016+671B. 2016+672

C. 2017+671D. 2017+672

【答案】B

【解析】

利用題意得AP33+,則易得AP623+),AP933+),則三角形旋轉(zhuǎn)三次一個循環(huán),一個循環(huán)3+,然后由20163×672即可得到AP2016的長度.

解:∵AP12AP22+,AP33+,

AP623+),

AP933+),

20163×672,

AP20166723+)=2016+672

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:A、B兩點在直線l的同一側(cè),線段AO,BM均是直線l的垂線段,且BMAO的右邊,AO=2BM,將BM沿直線l向右平移,在平移過程中,始終保持∠ABP=90°不變,BP邊與直線l相交于點P.

(1)當(dāng)PO重合時(如圖2所示),設(shè)點CAO的中點,連接BC.求證:四邊形OCBM是正方形;

(2)請利用如圖1所示的情形,求證:=;

(3)若AO=2,且當(dāng)MO=2PO時,請直接寫出ABPB的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰直角ABC中,AB=AC,點D是斜邊BC的中點,點E、F分別是ABAC邊上的點,且DEDF.

1)證明:BE+CF=EF2

2)若BE=12,CF=5,求DEF的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知等邊△ABC的邊長是2,以BC邊上的高AB1為邊作等邊三角形,得到第一個等邊△AB1C1;再以等邊△AB1C1B1C1邊上的高AB2為邊作等邊三角形,得到第二個等邊△AB2C2;再以等邊△AB2C2B2C2邊上的高AB3為邊作等邊三角形,得到第三個等邊△AB3C3;…,記△B1CB2的面積為S1B2C1B3的面積為S2,B3C2B4的面積為S3,如此下去,則Sn=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某中學(xué)為豐富學(xué)生的校園生活,準備一次性購買若干個足球和籃球(每個足球的價格相同,每個籃球的價格相同),若購買3個足球和2個籃球共需170元,購買2個足球和5個籃球共需260元.

1)購買一個足球、一個籃球各需多少元?(提示:列方程組解答)

2)根據(jù)該中學(xué)的實際情況,需一次性購買足球和籃球共46個,要求購買足球和籃球的總費用不超過1480元,這所中學(xué)最多可以購買多少個籃球?(提示:列不等式解答)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為線段上一動點,分別過點,,連接.已知,設(shè).

(1)用含的代數(shù)式表示的值;

(2)探究:當(dāng)點滿足什么條件時,的值最小?最小值是多少?

(3)根據(jù)(2)中的結(jié)論,請構(gòu)造圖形求代數(shù)式的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用一個長方形的紙片制作一個無蓋的長方體盒子,設(shè)這個長方形的長為a,寬為b,這個無蓋的長方體盒子高為c只考慮如圖所示,在長方形的右邊兩個角上各剪去一個大小相同的正方形,左上角剪去一個長方形的情況,則這個無蓋長方體盒子的容積是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,OA=OC,則由拋物線的特征寫出如下含有a、b、c三個字母的等式或不等式:①=﹣1;ac+b+1=0;abc>0;a﹣b+c>0.其中正確的個數(shù)是(  )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=x2-2x-3x軸交于A、B兩點

(1)當(dāng)0<x<3時,求y的取值范圍;

(2)點P為拋物線上一點,若SPAB=10,求出此時點P的坐標.

查看答案和解析>>

同步練習(xí)冊答案