【題目】A、B、C 為數(shù)軸上三點,若點 C 到點 A 的距離是點 C 到點 B 的距離的 2倍,則稱點 C 是(A,B)的奇異點,例如圖 1 中,點 A 表示的數(shù)為﹣1,點B 表示的數(shù)為 2,表示 1 的點 C 到點 A 的距離為 2,到點 B 的距離為 1,則點C 是(A,B)的奇異點,但不是(B,A)的奇異點.
(1)在圖 1 中,直接說出點 D 是(A,B)還是(B,C)的奇異點;
(2)如圖 2,若數(shù)軸上 M、N 兩點表示的數(shù)分別為﹣2 和 4,(M,N)的奇異點 K 在 M、N 兩點之間,請求出 K 點表示的數(shù);
(3)如圖 3,A、B 在數(shù)軸上表示的數(shù)分別為﹣20 和 40,現(xiàn)有一點 P 從點 B 出發(fā),向左運動.
①若點 P 到達點 A 停止,則當點 P 表示的數(shù)為多少時,P、A、B 中恰有一個點為其余兩點的奇異點?
②若點 P 到達點 A 后繼續(xù)向左運動,是否存在使得 P、A、B 中恰有一個點為其余兩點的奇異點的情況?若存在,請直接寫出此時 PB 的距離;若不存在,請說明理由.
【答案】(1)點D是(B,C)的奇異點,不是(A,B)的奇異點;(2)(M,N)的奇異點表示的數(shù)是2;(3)①點P表示的數(shù)是0或10或20時,P、A、B中恰有一個點為其余兩點的奇異點;②PB=120或180或90.
【解析】
(1)根據(jù)奇異點的定義和數(shù)軸上兩點間的距離,即可求出點D到點A的距離為1,到點B的距離為2,以及點D到點C的距離為1,就可以對點D做出判斷.
(2)設奇異點表示的數(shù)為x,根據(jù)奇異點的定義可得方程:x﹣(﹣2)=2(4﹣x).從而求得x值.
(3)①當P在A、B兩點之間時,P、A、B中恰有一個點為其余兩點的奇異點需分類討論,具體分四種情況討論:當點P是(A,B)的奇異點時、當點P是(B,A)的奇異點時、當點A是(B,P)的奇異點時、當點B是(A,P)的奇異點時,計算方法同(1).
②點P到達點A后繼續(xù)向左運動,是否存在使得P、A、B中恰有一個點為其余兩點的奇異點的情況方法同①分四種情況討論:當點P為(B,A)的奇異點時,PB=120;
當點A為(P,B)的奇異點時,PB=180;當點A為(B,P)的奇異點時,PB=90;
當點B為(P,A)的奇異點時,PB=120.
(1)在圖1中,點D到點A的距離為1,到點B的距離為2,
∴點D是(B,C)的奇異點,不是(A,B)的奇異點;
(2)設奇異點表示的數(shù)為x,
則由題意,得x﹣(﹣2)=2(4﹣x).
解得x=2.
∴(M,N)的奇異點表示的數(shù)是2;
(3)①設點P表示的數(shù)為y.
當點P是(A,B)的奇異點時,
則有y+20=2(40﹣y),
解得y=20.
當點P是(B,A)的奇異點時,
則有40﹣y=2(y+20),
解得y=0.
當點A是(B,P)的奇異點時,
則有40+20=2(y+20),
解得y=10.
當點B是(A,P)的奇異點時,
則有40+20=2(40﹣y),解得y=10.
∴當點P表示的數(shù)是0或10或20時,
P、A、B中恰有一個點為其余兩點的奇異點.
②當點P為(B,A)的奇異點時,PB=120;
當點A為(P,B)的奇異點時,PB=180;
當點A為(B,P)的奇異點時,PB=90;
當點B為(P,A)的奇異點時,PB=120.
科目:初中數(shù)學 來源: 題型:
【題目】A、B、C 為數(shù)軸上三點,若點 C 到點 A 的距離是點 C 到點 B 的距離的 2倍,則稱點 C 是(A,B)的奇異點,例如圖 1 中,點 A 表示的數(shù)為﹣1,點B 表示的數(shù)為 2,表示 1 的點 C 到點 A 的距離為 2,到點 B 的距離為 1,則點C 是(A,B)的奇異點,但不是(B,A)的奇異點.
(1)在圖 1 中,直接說出點 D 是(A,B)還是(B,C)的奇異點;
(2)如圖 2,若數(shù)軸上 M、N 兩點表示的數(shù)分別為﹣2 和 4,(M,N)的奇異點 K 在 M、N 兩點之間,請求出 K 點表示的數(shù);
(3)如圖 3,A、B 在數(shù)軸上表示的數(shù)分別為﹣20 和 40,現(xiàn)有一點 P 從點 B 出發(fā),向左運動.
①若點 P 到達點 A 停止,則當點 P 表示的數(shù)為多少時,P、A、B 中恰有一個點為其余兩點的奇異點?
②若點 P 到達點 A 后繼續(xù)向左運動,是否存在使得 P、A、B 中恰有一個點為其余兩點的奇異點的情況?若存在,請直接寫出此時 PB 的距離;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形ABCD為正方形,若AB=4,E是AD邊上一點(點E與點A、D不重合),BE的中垂線交AB于點M,交DC于點N,設AE=x,BM=y,則y與x的大致圖象是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC為銳角三角形,AD是BC邊上的高,正方形EFGH的一邊FG在BC上,頂點E、H分別在AB、AC上,已知BC=40cm,AD=30cm.
(1)求證:△AEH∽△ABC;
(2)求這個正方形的邊長與面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】“十一”國慶期間出租車司機小李某天下午的營運始終在長安街(自東向西或自西向東)上進行,如果規(guī)定向東為正,向西為負,他這天下午從天安門出發(fā),行車里程(單位:千米)如下:
+15,﹣2,+5,﹣1,+10,﹣3,﹣2,+12,+4,﹣5,+6.
(1)小李將最后一名乘客送抵目的地時,小李距天安門有多遠?
(2)如果汽車耗油量為0.08升/千米,這天下午小李共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在9×9網(wǎng)格中,每個小方格的邊長看作單位1,每個小方格的頂點叫作格點,△ABC的頂點都在格點上.
(1)請在網(wǎng)格中畫出△ABC的一個位似圖形△A1B1C,使兩個圖形以點C為位似中心,且所畫圖形與△ABC的相似比為2∶1;
(2)將△A1B1C繞著點C順時針旋轉(zhuǎn)90°得△A2B2C,畫出圖形,并在如圖所示的坐標系中分別寫出△A2B2C三個頂點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖所示,在平面直角坐標系中A(0,0),B(2,0),△AP1B是等腰直角三角形,且∠P1=90°,把△AP1B繞點B順時針旋轉(zhuǎn)180°,得到△BP2C;把△BP2C繞點C順時針旋轉(zhuǎn)180°,得到△CP3D,依此類推,則旋轉(zhuǎn)第2016次后,得到的等腰直角三角形的直角頂點P2017的坐標為( )
A.(4030,1)
B.(4029,﹣1)
C.(4033,1)
D.(4031,﹣1)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,已知AB=4,BC=3,矩形在直線l上繞其右下角的頂點B向右旋轉(zhuǎn)90°至圖①位置,再繞右下角的頂點繼續(xù)向右旋轉(zhuǎn)90°至圖②位置,…,以此類推,這樣連續(xù)旋轉(zhuǎn)2017次后,頂點A在整個旋轉(zhuǎn)過程中所經(jīng)過的路程之和為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com