【題目】如圖,在射線AB上順次取兩點(diǎn)C,D,使AC=CD=1,以CD為邊作矩形CDEF,DE=2,將射線AB繞點(diǎn)A沿逆時(shí)針?lè)较蛐D(zhuǎn),旋轉(zhuǎn)角記為α(其中0°<α<45°),旋轉(zhuǎn)后記作射線AB′,射線AB′分別交矩形CDEF的邊CF,DE于點(diǎn)G,H.若CG=x,EH=y,則下列函數(shù)圖象中,能反映y與x之間關(guān)系的是( )

A.
B.
C.
D.

【答案】D
【解析】∵四邊形CDEF是矩形,
∴CF∥DE,
∴△ACG∽△ADH,
,
∵AC=CD=1,∴AD=2,
,∴DH=2x,
∵DE=2,∴y=2﹣2x,
∵0°<α<45°,∴0<x<1,
故答案為:D.
根據(jù)矩形的性質(zhì)得出CF∥DE,可證得△ACG∽△ADH,再根據(jù)相似三角形的性質(zhì)得出對(duì)應(yīng)邊成比例,求出DH=2x,從而可得出y與x的函數(shù)解析式,再根據(jù)0°<α<45°,求出自變量x的取值范圍,即可得出選項(xiàng)。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,AB=6AC=8,BC=10,P為邊BC上一動(dòng)點(diǎn),PEABE,PFACFMEF中點(diǎn),則AM的最小值為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,請(qǐng)?jiān)谙铝兴膫(gè)關(guān)系中,選出兩個(gè)恰當(dāng)?shù)年P(guān)系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.關(guān)系:①ADBC;②ABCD;③∠A=∠C;④∠B+∠C180°

1)寫出所有成立的情況(只需填寫序號(hào));

2)選擇其中一種證明.

已知:在四邊形ABCD中, ;

求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖(1)四邊形ABCD中,已知∠ABC+ADC180°,ABAD,DAAB,點(diǎn)ECD的延長(zhǎng)線上,∠BAC=∠DAE

1)求證:△ABC≌△ADE;

2)求證:CA平分∠BCD;

3)如圖(2),設(shè)AF是△ABCBC邊上的高,求證:EC2AF

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,∠B60°,D、E分別為AB、BC上的點(diǎn),且AE、CD交于點(diǎn)F

1)如圖1,若AE、CD為△ABC的角平分線:

求∠AFD的度數(shù);

AD3,CE2,求AC的長(zhǎng);

2)如圖2,若∠EAC=∠DCA30°,求證:ADCE

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,我們給中國(guó)象棋棋盤建立一個(gè)平面直角坐標(biāo)系(每個(gè)小正方形的邊長(zhǎng)均為),根據(jù)象棋中“馬”走“日”的規(guī)定,若“馬”的位置在圖中的點(diǎn)

寫出下一步“馬”可能到達(dá)的點(diǎn)的坐標(biāo)為_ (寫出所有可能的點(diǎn)的坐標(biāo));

順次連接中的所有點(diǎn),得到的圖形是 _圖形(填“中心對(duì)稱”或“軸對(duì)稱”;

中得到的圖形各頂點(diǎn)的坐標(biāo)都乘以請(qǐng)?jiān)谄矫嬷苯亲鴺?biāo)系中畫出變化后的圖形,并與原圖形比較,形狀和大小有怎樣的變化?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】《如果想毀掉一個(gè)孩子,就給他一部手機(jī)!》這是微信朋友圈熱傳的一篇文章.國(guó)際上,法國(guó)教育部宣布從20189月新學(xué)期起,小學(xué)和初中禁止學(xué)生使用手機(jī).為了解學(xué)生手機(jī)使用情況,某學(xué)校開展了“手機(jī)伴我健康行”主題活動(dòng),他們隨機(jī)抽取部分學(xué)生進(jìn)行“使用手機(jī)目的”和“每周使用手機(jī)的時(shí)間”的問(wèn)卷調(diào)查,并繪制成如圖所示的統(tǒng)計(jì)圖,已知“查資料”的人數(shù)是人.

請(qǐng)你根據(jù)以上信息解答下列問(wèn)題:

求出本次隨機(jī)抽取的學(xué)生共有多少人;

在扇形統(tǒng)計(jì)圖中,“玩游戲”對(duì)應(yīng)的百分比為______________,圓心角度數(shù)是_______________度;

補(bǔ)全條形統(tǒng)計(jì)圖;

該校共有學(xué)生人,估計(jì)每周使用手機(jī)時(shí)間在小時(shí)以上(不含小時(shí))的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】己知,滿足點(diǎn)在軸的負(fù)半軸上,直角頂點(diǎn)軸上,點(diǎn)軸上方.

如圖1所示,若點(diǎn)與原點(diǎn)重合,點(diǎn)的坐標(biāo)是,則點(diǎn)的坐標(biāo)是 ;

如圖2所示,若點(diǎn)的坐標(biāo)是,過(guò)點(diǎn)軸于,請(qǐng)求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c (a、b、c為常數(shù)且a≠0)中的x與y的部分對(duì)應(yīng)值如下表,

x

-3

-2

-1

0

1

2

3

4

5

y

12

5

0

-3

-4

-3

0

5

12

下列四個(gè)結(jié)論:
①二次函數(shù)y=ax2+bx+c 有最小值,最小值為-3;
②拋物線與y軸交點(diǎn)為(0,-3);
③二次函數(shù)y=ax2+bx+c 的圖像對(duì)稱軸是x=1;
④本題條件下,一元二次方程ax2+bx+c的解是x1=-1,x2=3.
其中正確結(jié)論的個(gè)數(shù)是( )
A.4
B.3
C.2
D.1

查看答案和解析>>

同步練習(xí)冊(cè)答案