【題目】嘉淇乘坐一艘游船出海游玩,游船上的雷達(dá)掃描探測得到的結(jié)果如圖所示,每相鄰兩個(gè)圓之間距離是1km (最小圓的半徑是1km ),下列關(guān)于小艇 A B 的位置描述,正確的是(

A.小艇 A 在游船的北偏東60°方向上,且與游船的距離是3km

B.游船在小艇 A 的南偏西60°方向上,且與小艇 A 的距離是3km

C.小艇 B 在游船的北偏西30°方向上,且與游船的距離是 2km

D.游船在小艇 B 的南偏東60°方向上,且與小艇 B 的距離是 2km

【答案】D

【解析】

利用方向角的表示方法對各選項(xiàng)進(jìn)行判斷.

小艇A在游船的北偏東30°,且距游船3km;小艇B在游船的北偏西60°,且距游船2km;游船在小艇的南偏西30°,且距游船3km;小艇B在小艇C的北偏西30°,且距游船2km

故選D

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖:將邊長為1的正三角形OAP,沿x軸正方向連續(xù)翻轉(zhuǎn)若干次,點(diǎn)A依次落在點(diǎn)A1,A2,A3,A4,…,A2019的位置上,則點(diǎn)A2019的坐標(biāo)為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為便于管理與場地安排,松北某中學(xué)校以小明所在班級為例,對學(xué)生參加各個(gè)體育項(xiàng)目進(jìn)行了調(diào)查統(tǒng)計(jì).并把調(diào)查的結(jié)果繪制了如圖所示的不完全統(tǒng)計(jì)圖,請你根據(jù)下列信息回答問題:

(1)在這次調(diào)查中,小明所在的班級參加籃球項(xiàng)目的同學(xué)有多少人?并補(bǔ)全條形統(tǒng)計(jì)圖.

(2)如果學(xué)校有800名學(xué)生,請估計(jì)全校學(xué)生中有多少人參加籃球項(xiàng)目.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小穎和小亮上山游玩,小穎乘坐纜車,小亮步行,兩人相約在山頂?shù)睦|車終點(diǎn)會合.已知小亮行走到纜車終點(diǎn)的路程是纜車到山頂?shù)木路長的2倍,小穎在小亮出發(fā)后50分才乘上纜車,纜車的平均速度為180米/分,設(shè)小亮出發(fā)x分后行走的路程為y米.圖中的折線表示小亮在整個(gè)行走過程中yx的變化關(guān)系.

1)小亮行走的總路程是_________米,他途中休息了___________分;

2)分別求出小亮在休息前和休息后所走的路程段上的步行速度;

3)當(dāng)小穎到達(dá)纜車終點(diǎn)時(shí),小亮離纜車終點(diǎn)的路程是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,以矩形ABCD的相鄰邊建立直角坐標(biāo)系,AB=3,BC=5.點(diǎn)E是邊CD上一點(diǎn),將△ADE沿著AE翻折,點(diǎn)D恰好落在BC邊上,記為F

(1)求折痕AE所在直線的函數(shù)解析式______

(2)若把翻折后的矩形沿y軸正半軸向上平移m個(gè)單位,連結(jié)OF,若△OAF是等腰三角形,則m的值是______,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,點(diǎn)C在⊙O上,延長BC至點(diǎn)D,使DC=CB,延長DA與⊙O的另一個(gè)交點(diǎn)為E,連接AC,CE.

(1)求證:∠B=D;

(2)若AB=4,BC﹣AC=2,求CE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近幾年購物的支付方式日益增多,某數(shù)學(xué)興趣小組就此進(jìn)行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進(jìn)行調(diào)查統(tǒng)計(jì),得到如下兩幅不完整的統(tǒng)計(jì)圖.

請你根據(jù)統(tǒng)計(jì)圖提供的信息,解答下列問題:

(1)本次一共調(diào)查了多少名購買者?

(2)請補(bǔ)全條形統(tǒng)計(jì)圖;在扇形統(tǒng)計(jì)圖中A種支付方式所對應(yīng)的圓心角為   度.

(3)若該超市這一周內(nèi)有1600名購買者,請你估計(jì)使用AB兩種支付方式的購買者共有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(m,m),點(diǎn)B的坐標(biāo)為(n,﹣n),拋物線經(jīng)過A、O、B三點(diǎn),連接OA、OB、AB,線段ABy軸于點(diǎn)C.已知實(shí)數(shù)m、n(mn)分別是方程x2﹣2x﹣3=0的兩根.

(1)求拋物線的解析式;

(2)若點(diǎn)P為線段OB上的一個(gè)動點(diǎn)(不與點(diǎn)O、B重合),直線PC與拋物線交于D、E兩點(diǎn)(點(diǎn)Dy軸右側(cè)),連接OD、BD.

①當(dāng)△OPC為等腰三角形時(shí),求點(diǎn)P的坐標(biāo);

②求△BOD 面積的最大值,并寫出此時(shí)點(diǎn)D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,CFABF,BEACEMBC的中點(diǎn),BC=10

(1)若∠ABC=50°,∠ACB=60°,求∠EMF的度數(shù);

(2)EF=4,求△MEF的面積.

查看答案和解析>>

同步練習(xí)冊答案