【題目】如圖,A(m,0),B(0,n),以B點(diǎn)為直角頂點(diǎn)在第二象限作等腰直角△ABC,則C點(diǎn)的坐標(biāo)為_____.(用字母m、n表示)
【答案】(﹣n,n﹣m)
【解析】
過(guò)點(diǎn)C作CD⊥y軸于點(diǎn)D,由△ABC為等腰直角三角形即可得出∠ABC=90°、AB=BC,通過(guò)角的計(jì)算即可得出∠ABO=∠BCD,再結(jié)合∠CDB=∠BOA=90°即可利用AAS證出△ABO和△BCD,由此即可得出BD、CD的長(zhǎng)度,進(jìn)而可得出點(diǎn)C的坐標(biāo).
解:過(guò)點(diǎn)C作CD⊥y軸于點(diǎn)D,如圖所示.
∵△ABC為等腰直角三角形,
∴∠ABC=90°,AB=BC.
∵CD⊥BD,BO⊥AO,
∴∠CDB=∠BOA=90°.
∵∠CBD+∠ABO=90°,∠CBD+∠BCD=90°,
∴∠ABO=∠BCD.
在△ABO和△BCD中,,
∴△ABO≌△BCD(AAS),
∴BD=AO,CD=BO,
∵A(m,0),B(0,n),
∴BD=﹣m,CD=n,
∴點(diǎn)C的坐標(biāo)為(﹣n,n﹣m),
故答案為:(﹣n,n﹣m).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:如圖1,點(diǎn)G是BC的中點(diǎn),點(diǎn)H在AF上,動(dòng)點(diǎn)P以每秒2cm的速度沿圖1的邊線運(yùn)動(dòng),運(yùn)動(dòng)路徑為:G→C→D→E→F→H,相應(yīng)的△ABP的面積y(cm2)關(guān)于運(yùn)動(dòng)時(shí)間t(s)的函數(shù)圖象如圖2,若AB=6cm,則下列四個(gè)結(jié)論中正確的個(gè)數(shù)有( )①圖1中的BC長(zhǎng)是8cm,②圖2中的M點(diǎn)表示第4秒時(shí)y的值為24cm2,③圖1中的CD長(zhǎng)是4cm,④圖2中的N點(diǎn)表示第12秒時(shí)y的值為18cm2,⑤圖1的總面積為72 cm2
A.2個(gè)B.3個(gè)C.4個(gè)D.5個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線經(jīng)過(guò)點(diǎn),與軸負(fù)半軸交于點(diǎn),與軸交于點(diǎn),且.
(1)求拋物線的解析式;
(2)點(diǎn)在軸上,且,求點(diǎn)的坐標(biāo);
(3)點(diǎn)在拋物線上,點(diǎn)在拋物線的對(duì)稱軸上,是否存在以點(diǎn),,,為頂點(diǎn)的四邊形是平行四邊形?若存在。求出所有符合條件的點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】下面是“求作∠AOB的角平分線”的尺規(guī)作圖過(guò)程.
已知:如圖,鈍角∠AOB.
求作:∠AOB的角平分線.
作法:
①在OA和OB上,分別截取OD、OE,使OD=OE;
②分別以D、E為圓心,大于DE的長(zhǎng)為半徑作弧,在∠AOB內(nèi),兩弧交于點(diǎn)C;
③作射線OC.
所以射線OC就是所求作的∠AOB的角平分線.
請(qǐng)回答:該尺規(guī)作圖的依據(jù)是__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在等腰直角△ABC中,∠CAB=90°,F(xiàn)是AB邊上一點(diǎn),作射線CF,過(guò)點(diǎn)B作BG⊥CF于點(diǎn)G,連接AG.
(1)求證:∠ABG=∠ACF;
(2)用等式表示線段CG,AG,BG之間的等量關(guān)系,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,矩形ABCD中,∠ADB=23°,E是AD上一點(diǎn).將矩形沿CE折疊,點(diǎn)D的對(duì)應(yīng)點(diǎn)F恰好落在BC上,CE交BD于H,連接HF,則∠BHF=__.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某社區(qū)決定購(gòu)置一批共享單車,經(jīng)市場(chǎng)調(diào)查得知,購(gòu)買3輛男式單車與4輛女式單車費(fèi)用相同,購(gòu)買5輛男式單車與4輛女式單車共需1600元.
(1)求男式單車和女式單車每輛分別是多少元?
(2)該社區(qū)要求男式單車比女式單車多4輛,兩種單車至少需要22輛,購(gòu)置兩種單車的費(fèi)用不超過(guò)5000元,問(wèn)該社區(qū)有幾種購(gòu)置方案?怎樣的購(gòu)置才能使所需總費(fèi)用最低?最低費(fèi)用是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校計(jì)劃購(gòu)買一批籃球和足球,已知購(gòu)買2個(gè)籃球和1個(gè)足球共需320元,購(gòu)買3個(gè)籃球和2個(gè)足球共需540元.
(1)求每個(gè)籃球和每個(gè)足球的售價(jià);
(2)如果學(xué)校計(jì)劃購(gòu)買這兩種球共50個(gè),總費(fèi)用不超過(guò)5500元,那么最多可購(gòu)買多少個(gè)足球?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于拋物線.
它與軸交點(diǎn)的坐標(biāo)為_(kāi)_______,與軸交點(diǎn)的坐標(biāo)為_(kāi)_______,頂點(diǎn)坐標(biāo)為_(kāi)_______.
在所給的平面直角坐標(biāo)系中畫(huà)出此時(shí)拋物線;
結(jié)合圖象回答問(wèn)題:當(dāng)時(shí),的取值范圍是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com