【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),的邊垂直于軸,垂足為B,反比例函數(shù)的圖象經(jīng)過AO上的點(diǎn)C,且,與邊AB相交于點(diǎn)D, .
(1)求點(diǎn)C的橫坐標(biāo);
(2)求反比例函數(shù)的解析式;
(3)求經(jīng)過C,D兩點(diǎn)的一次函數(shù)解析式.
【答案】(1)點(diǎn)C的橫坐標(biāo)是4;(2);(3).
【解析】
(1)過點(diǎn)C作CE⊥x軸于點(diǎn)E,利用平行線分線段成比例定理列出比例式,求出OE即可;
(2)設(shè)點(diǎn)D的坐標(biāo)為(6,m)(m>0),則點(diǎn)A的坐標(biāo)為(6,+m),由點(diǎn)A的坐標(biāo)求出點(diǎn)C的坐標(biāo),根據(jù)點(diǎn)C、D在反比例函數(shù)圖象上可得出關(guān)于m的方程,解方程求出m即可得出結(jié)論;
(3)由m的值,可得出點(diǎn)C、D的坐標(biāo),利用待定系數(shù)法即可得出結(jié)論.
解:(1)如圖,過點(diǎn)C作CE⊥x軸于點(diǎn)E,
∵AB⊥x軸,
∴CE∥AB,
∴,即,
∴OE=4,
∴點(diǎn)C的橫坐標(biāo)是4;
(2)設(shè)點(diǎn)D的坐標(biāo)為(6,m)(m>0),則點(diǎn)A的坐標(biāo)為(6,+m),
由(1)知,即,
∴,
∴點(diǎn)C的坐標(biāo)為(4,),
∵點(diǎn)C、點(diǎn)D均在反比例函數(shù)的函數(shù)圖象上,
∴6m=,
解得:m=2,
∴k=6m=12,
∴反比例函數(shù)的解析式為;
(3)∵m=2,
∴點(diǎn)C的坐標(biāo)為(4,3),點(diǎn)D的坐標(biāo)為(6,2),
設(shè)經(jīng)過點(diǎn)C、D的一次函數(shù)的解析式為y=ax+b(a≠0),
則有,
解得:,
∴經(jīng)過C、D兩點(diǎn)的一次函數(shù)解析式為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小聰對(duì)函數(shù)的圖象和性質(zhì)進(jìn)行了探究.已知當(dāng)自變量的值為0或4時(shí),函數(shù)值都為-3,當(dāng)自變量的值為-1或5時(shí),函數(shù)值為2.
探究過程如下,請(qǐng)補(bǔ)充完整.
(1)這個(gè)函數(shù)的表達(dá)式為 ;
(2)在給出的平面直角坐標(biāo)系中,畫出這個(gè)函數(shù)的圖象并寫出這個(gè)函數(shù)的一條性質(zhì): ;
(3)進(jìn)一步探究函數(shù)圖象并解決問題:
①直線與函數(shù)有4個(gè)解,則k的取值范圍為 ;
②已知函數(shù)的圖象如圖所示,結(jié)合你所畫的函數(shù)圖象,寫出不等式的解集: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵(lì)市民節(jié)約用電,某市對(duì)居民用電實(shí)行“階梯收費(fèi)”(總電費(fèi)=第一階梯電費(fèi)+第二階梯電費(fèi)).規(guī)定:用電量不超過200度按第一階梯電價(jià)收費(fèi),超過200度的部分按第二階梯電價(jià)收費(fèi),如圖是張磊家2018年2月和3月所交電費(fèi)的收據(jù).
(1)該市規(guī)定的第一階梯電價(jià)和第二階梯電價(jià)單價(jià)分別為多少?
(2)張磊家4月份家庭支出計(jì)劃中電費(fèi)為160元,他家最大用電量為多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的頂點(diǎn)P是BC中點(diǎn),兩邊PE,PF分別交AB,AC于點(diǎn)E,F,給出以下五個(gè)結(jié)論:①△PFA≌△PEB,②EF=AP,③△PEF是等腰直角三角形,④當(dāng)∠EPF在△ABC內(nèi)繞頂點(diǎn)P旋轉(zhuǎn)時(shí)(點(diǎn)E不與A,B重合),S四邊形AEPF=S△ABC,上述結(jié)論中始終正確有 ( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,小賢為了體驗(yàn)四邊形的不穩(wěn)定性,將四根木條用釘子釘成一個(gè)矩形框架ABCD,B與D兩點(diǎn)之間用一根橡皮筋拉直固定,然后向右扭動(dòng)框架,觀察所得四邊形的變化,下列判斷錯(cuò)誤的是( )
A. 四邊形ABCD由矩形變?yōu)槠叫兴倪呅?/span> B. BD的長(zhǎng)度增大
C. 四邊形ABCD的面積不變 D. 四邊形ABCD的周長(zhǎng)不變
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象與x軸交于點(diǎn)A,與反比例函數(shù) (x<0)的圖象交于點(diǎn)B(﹣2,n),過點(diǎn)B作BC⊥x軸于點(diǎn)C,點(diǎn)D(3﹣3n,1)是該反比例函數(shù)圖象上一點(diǎn).
(1)求m的值;
(2)若∠DBC=∠ABC,求一次函數(shù)y=kx+b的表達(dá)式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了測(cè)量學(xué)校附近新蓋大樓的高度,數(shù)學(xué)實(shí)踐活動(dòng)小組,借助大樓旁邊高30米的空中操場(chǎng)進(jìn)行測(cè)量.其中米,地面,小華站在操場(chǎng)的處觀測(cè)大樓頂點(diǎn)的仰角為、大樓底端的俯角為,請(qǐng)根據(jù)題中的信息求出大樓的高度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某超市擬于中秋節(jié)前天里銷售某品牌月餅,其進(jìn)價(jià)為元/.設(shè)第天的銷售價(jià)格為(元/),銷售量為.該超市根據(jù)以往的銷售經(jīng)驗(yàn)得出以下的銷售規(guī)律:①當(dāng)時(shí),;當(dāng)時(shí),與滿足一次函數(shù)關(guān)系,且當(dāng)時(shí),;時(shí),.②與的關(guān)系為.
(1)當(dāng)時(shí),與的關(guān)系式為 ;
(2)為多少時(shí),當(dāng)天的銷售利潤(rùn)(元)最大?最大利潤(rùn)為多少?
(3)若超市希望第天到第天的日銷售利潤(rùn)(元)隨的增大而增大,則需要在當(dāng)天銷售價(jià)格的基礎(chǔ)上漲元/,求的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題提出
(1)如圖1,在△ABC中,∠A=75°,∠C=60°,AC=6,求△ABC的外接圓半徑R的值;
問題探究
(2)如圖2,在△ABC中,∠BAC=60°,∠C=45°,AC=8,點(diǎn)D為邊BC上的動(dòng)點(diǎn),連接AD以AD為直徑作⊙O交邊AB、AC分別于點(diǎn)E、F,接E、F,求EF的最小值;
問題解決
(3)如圖3,在四邊形ABCD中,∠BAD=90°,∠BCD=30°,AB=AD,BC+CD=12,連接AC,線段AC的長(zhǎng)是否存在最小值,若存在,求最小值:若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com