【題目】我市準(zhǔn)備在相距千米的,兩工廠間修一條筆直的公路,但在地北偏東方向、地北偏西方向的處,有一個半徑為千米的住宅小區(qū)(如圖),問修筑公路時,這個小區(qū)是否有居民需要搬遷?(參考數(shù)據(jù):,)
【答案】修的公路不會穿越住宅小區(qū),故該小區(qū)居民不需搬遷
【解析】
過點(diǎn)P作PO⊥MN于O點(diǎn),則PO是點(diǎn)P到MN的距離,根據(jù)Rt△MPO和Rt△NPO中的三角函數(shù)關(guān)系求出PO的長,與0.6千米比較即可.
如圖:過點(diǎn)P作PO⊥MN于O點(diǎn),設(shè)PO=x,
在Rt△MPO中,∵∠PMO=45°,
∴MO=PO=x,
在Rt△PON中,∵∠PNO=30°,
∴tan30°= = = ,
解方程得:x=-10.73(千米)>0.6千米,
∴修的公路不會穿越住宅小區(qū),故該小區(qū)居民不需搬遷.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等腰三角形ABC的底邊BC長為6,面積是18,腰AC的垂直平分線EF分別交AC,AB于E,F點(diǎn),若點(diǎn)D為BC邊的中點(diǎn),點(diǎn)M為線段EF上一動點(diǎn),則△CDM的周長的最小值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于,兩點(diǎn),與軸交于點(diǎn),與軸交于點(diǎn),已知,,點(diǎn)的坐標(biāo)為.
求反比例函數(shù)的解析式;
求一次函數(shù)的解析式;
在軸上存在一點(diǎn),使得與相似,請你求出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用硬紙板剪一個平行四邊形ABCD,作出它的對角線的交點(diǎn)O,我們可以做如下操作:
用大頭針把一根平放在平行四邊形上的直細(xì)木條固定在點(diǎn)O處,并使細(xì)木條可以繞點(diǎn)O轉(zhuǎn)動,撥動細(xì)木條,它可以停留在任意位置. 如果設(shè)細(xì)木條與一組對邊AB,CD的交點(diǎn)分別為點(diǎn)E,F,則下列結(jié)論:①OE=OF;②AE=CF;③BE=DF;④△AOE≌△COF,其中一定成立的是_________________________(填寫序號即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)E在△DBC的邊DB上,點(diǎn)A在△DBC內(nèi)部,∠DAE=∠BAC=90°,AD=AE,AB=AC.給出下列結(jié)論:
①BD=CE;②∠ABD+∠ECB=45°;③BD⊥CE;④BE2=2(AD2+AB2)﹣CD2.其中正確的是( 。
A. ①②③④ B. ②④ C. ①②③ D. ①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】模型建立:如圖1,等腰直角三角形中,,,直線經(jīng)過點(diǎn),過作于,過作于.
(1)求證:;
(2)模型應(yīng)用:
①已知直線l1:與y軸交于點(diǎn),將直線l1繞著點(diǎn)順時針旋轉(zhuǎn)45°至l2,如圖2,求l2的函數(shù)解析式;
②如圖3,長方形ABCO,為坐標(biāo)原點(diǎn),的坐標(biāo)為(8,6),、分別在坐標(biāo)軸上,是線段上動點(diǎn),點(diǎn)是直線上的一點(diǎn),若△APD是以點(diǎn)D為直角頂點(diǎn)的等腰Rt△,請直接寫出點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)O是等邊△ABC內(nèi)一點(diǎn).將△BOC繞點(diǎn)C按順時針方向旋轉(zhuǎn)60°得△ADC,連接OD.已知∠AOB=110°.
(1)求證:△COD是等邊三角形;
(2)當(dāng)α=150°時,試判斷△AOD的形狀,并說明理由;
(3)探究:當(dāng)α為多少度時,△AOD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖, 平面直角坐標(biāo)系中,過點(diǎn)C(28,28)分別作x軸、y軸的垂線,垂足分別為B、A,一次函數(shù)y=x+3的圖像分別與x軸和CB交于點(diǎn)D、E,點(diǎn)P 是DE中點(diǎn),連接AP.
⑴ 求點(diǎn)D與點(diǎn)E的坐標(biāo); ⑵求證:△ADO≌△AEC;⑶ 求AP的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com