【題目】在平面直角坐標(biāo)系中,A、B均在邊長(zhǎng)為1的正方形網(wǎng)格格點(diǎn)上.

1)求線段AB所在直線的函數(shù)解析式,并寫出當(dāng)0≤y≤2時(shí),自變量x的取值范圍

2)將線段AB繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°,得到線段AC,請(qǐng)?jiān)诰W(wǎng)格中畫出線段AC

3)若直線AC的函數(shù)解析式為ykx+b,則yx的增大而   (填增大減小).

【答案】(1)1≤x≤2;(2)見解析;(3)增大.

【解析】

1)待定系數(shù)法求解可得函數(shù)解析式,結(jié)合函數(shù)圖象可得x的取值范圍;

2)根據(jù)旋轉(zhuǎn)的定義求解可得;

3)根據(jù)一次函數(shù)的定義求解可得.

解:(1)設(shè)線段AB所在直線的解析式為ykx+b,將點(diǎn)A0,4)、B2,0)代入,得:

,

解得:

∴線段AB所在直線解析式為y=﹣2x+4,

由函數(shù)圖象知當(dāng)0≤y≤2時(shí),1≤x≤2;

2)如圖,線段AC即為所求;

3)由(2)知直線AC自左向右逐漸上升,即yx的增大而增大,

故答案為:增大.

故答案為:(11≤x≤2;(2)見解析;3)增大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)P是菱形ABCD的對(duì)角線BD上的一動(dòng)點(diǎn),連接CP并延長(zhǎng)交AD于E,交BA的延長(zhǎng)線于點(diǎn)F.

(1)求證:△APD≌△CPD.
(2)當(dāng)菱形ABCD變?yōu)檎叫,且PC=2,tan∠PFA= 時(shí),求正方形ABCD的邊長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形BCDE的各邊分別平行于x軸與y軸,物體甲和物體乙由點(diǎn)A2,0)同時(shí)出發(fā),沿矩形BCDE的邊作環(huán)繞運(yùn)動(dòng),物體甲按逆時(shí)針方向以1個(gè)單位/秒勻速運(yùn)動(dòng),物體乙按順時(shí)針方向以2個(gè)單位/秒勻速運(yùn)動(dòng),則兩個(gè)物體運(yùn)動(dòng)后的第2018次相遇地點(diǎn)的坐標(biāo)是( 。

A. 1,﹣1 B. 2,0 C. (﹣1,1 D. (﹣1,﹣1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知∠1=2,AC=AD,請(qǐng)?jiān)黾右粋(gè)條件,使ABC≌△AED,你添加的條件是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩種商品原來的單價(jià)和為100元因市場(chǎng)變化,甲商品降價(jià)10%,乙商品提價(jià)40%,調(diào)價(jià)后兩種商品的單價(jià)和比原來的單價(jià)和提高了20%甲、乙兩種商品原來的單價(jià)各是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,為了測(cè)量山頂鐵塔AE的高,小明在27m高的樓CD底部D測(cè)得塔頂A的仰角為45°,在樓頂C測(cè)得塔頂A的仰角36°52′.已知山高BE為56m,樓的底部D與山腳在同一水平線上,求該鐵塔的高AE.(參考數(shù)據(jù):sin36°52′≈0.60,tan36°52′≈0.75)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x、y的方程組,其中﹣3≤a≤1,給出下列結(jié)論:

是方程組的解;

②當(dāng)a=﹣2時(shí),x+y=0;

③若y≤1,則1≤x≤4;

④若S=3x﹣y+2a,則S的最大值為11.

其中正確的有_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】黃石市在創(chuàng)建國(guó)家級(jí)文明衛(wèi)生城市中,綠化檔次不斷提升.某校計(jì)劃購(gòu)進(jìn)A,B兩種樹木共100棵進(jìn)行校園綠化升級(jí),經(jīng)市場(chǎng)調(diào)查:購(gòu)買A種樹木2棵,B種樹木5棵,共需600元;購(gòu)買A種樹木3棵,B種樹木1棵,共需380元.

(1)求A種,B種樹木每棵各多少元?

(2)因布局需要,購(gòu)買A種樹木的數(shù)量不少于B種樹木數(shù)量的3倍.學(xué)校與中標(biāo)公司簽訂的合同中規(guī)定:在市場(chǎng)價(jià)格不變的情況下(不考慮其他因素),實(shí)際付款總金額按市場(chǎng)價(jià)九折優(yōu)惠,請(qǐng)?jiān)O(shè)計(jì)一種購(gòu)買樹木的方案,使實(shí)際所花費(fèi)用最省,并求出最省的費(fèi)用.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c(a≠0)與x軸相交于A,B兩點(diǎn),與y軸相交于點(diǎn)C,直線y=kx+n(k≠0)經(jīng)過B,C兩點(diǎn),已知A(1,0),C(0,3),且BC=5.

(1)分別求直線BC和拋物線的解析式(關(guān)系式);
(2)在拋物線的對(duì)稱軸上是否存在點(diǎn)P,使得以B,C,P三點(diǎn)為頂點(diǎn)的三角形是直角三角形?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案