【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣x+3與拋物線 交于A、B兩點(diǎn),點(diǎn)A在x軸上,點(diǎn)B的橫坐標(biāo)為 .動(dòng)點(diǎn)P在拋物線上運(yùn)動(dòng)(不與點(diǎn)A、B重合),過點(diǎn)P作y軸的平行線,交直線AB于點(diǎn)Q.當(dāng)PQ不與y軸重合時(shí),以PQ為邊作正方形PQMN,使MN與y軸在PQ的同側(cè),連結(jié)PM.設(shè)點(diǎn)P的橫坐標(biāo)為m.

(1)求b、c的值.
(2)當(dāng)點(diǎn)N落在直線AB上時(shí),直接寫出m的取值范圍.
(3)當(dāng)點(diǎn)P在A、B兩點(diǎn)之間的拋物線上運(yùn)動(dòng)時(shí),設(shè)正方形PQMN的周長(zhǎng)為C,求C與m之間的函數(shù)關(guān)系式,并寫出C隨m增大而增大時(shí)m的取值范圍.
(4)當(dāng)△PQM與坐標(biāo)軸有2個(gè)公共點(diǎn)時(shí),直接寫出m的取值范圍.

【答案】
(1)解:∵直線y=﹣x+3與x軸相交于點(diǎn)A,

∴A(3,0),

∵點(diǎn)B在直線y=﹣x+3上,且B的橫坐標(biāo)為﹣

∴B(﹣ ),

∵A,B在拋物線上,


(2)解:方法1、由(1)知,b= ,c= ,

∴拋物線的解析式為y=﹣ x2+ x+ ,

設(shè)P(m,﹣ m2+ m+ ),

∵點(diǎn)Q在直線y=﹣x+3上,

∴Q(m,﹣m+3),

∵點(diǎn)N在直線AB上,

∴N(( m2 m﹣ ),(﹣ m2+ m+ )),

∴PN=| m2 m﹣ ﹣m|=| m2 m﹣ |

∴PQ=|﹣ m2+ m+ ﹣(﹣m+3)|=|﹣ m2+ m+ |,

∵四邊形PQMN時(shí)正方形,

∴PN=PQ,

∴| m2 m﹣ |=|﹣ m2+ m+ |,此時(shí)等式恒成立,

當(dāng)m<0且m≠﹣ 時(shí),

∵M(jìn)N與y軸在PQ的同側(cè),

∴點(diǎn)N在點(diǎn)P右側(cè),

m2 m﹣ >m,

∴m<﹣ ,

當(dāng)m>0且m≠3時(shí),

∵M(jìn)N與y軸在PQ的同側(cè),

∴點(diǎn)P在點(diǎn)N的右側(cè),

m2 m﹣ <m,

∴﹣ <m<3,

∴0<m<3,

即:m的范圍為m<﹣ 或0<m<3;

方法2、如圖,

記直線AB與y軸的交點(diǎn)為D,

∵直線AB的解析式為y=﹣x+3,

∴D(0,3),

∴OD=3,

∵A(3,0),

∴OA=3,

∴OA=OB,

∴∠ODA=45°,

∵PQ∥y軸,

∴∠PQB=45°,

記:直線PN交直線AB于N',

∵四邊形PQMN是正方形,

∴∠QPN=90°,

∴∠PN'Q=45°=∠PQN',

∴PQ=PN',

∵四邊形PQMN是正方形,

∴PQ=PN,

點(diǎn)N在點(diǎn)P的左側(cè)時(shí),點(diǎn)N'都在直線AB上,

∵M(jìn)N與y軸在PQ的同側(cè),

∴m的范圍為m<﹣ 或0<m<3


(3)解:由(1)知,b= ,c=

∴拋物線的解析式為y=﹣ x2+ x+ ,

設(shè)P(m,﹣ m2+ m+ ),

∵點(diǎn)Q在直線y=﹣x+3上,

∴Q(m,﹣m+3),

∴PQ=|﹣ m2+ m+ ﹣(﹣m+3)|=|﹣ m2+ m+ |,

∵點(diǎn)P在點(diǎn)A,B之間的拋物線上,

∴PQ=﹣ m2+ m+ ,(﹣ <m<3且m≠0),

∵設(shè)正方形PQMN的周長(zhǎng)為C,

∴C=4PQ=4(﹣ m2+ m+ )=﹣2m2+ m+2=﹣2(m﹣ 2+

∵C隨m增大而增大,

∴m<

∴﹣ <m< 且m≠0


(4)解:當(dāng)△PQM與坐標(biāo)軸有2個(gè)公共點(diǎn)時(shí),

∴m<0或0<m<3

當(dāng)0<m<3,PN>yP,

由(2)知,P(m,﹣ m2+ m+ ),PQ=|﹣ m2+ m+ |=﹣ m2+ m+

∵四邊形PQMN是正方形,

∴PN=PQ=﹣ m2+ m+ >﹣ m2+ m+ ,

∴m>3,所以,此種情況不符合題意;

當(dāng)m<0時(shí),PN>yP,

∵PQ= m2 m﹣

∵四邊形PQMN是正方形,

∴PN=PQ= m2 m﹣ >﹣ m2+ m+

∴m>3(舍)或m<﹣ ,

即:當(dāng)△PQM與坐標(biāo)軸有2個(gè)公共點(diǎn)時(shí),m<﹣


【解析】(1)先確定出點(diǎn)A,B的坐標(biāo),最后用待定系數(shù)法即可得出結(jié)論。
(2)點(diǎn)P在拋物線上,點(diǎn)Q在直線y=﹣x+3上,點(diǎn)N在直線AB上,設(shè)出點(diǎn)P的坐標(biāo),再表示出Q、N的坐標(biāo),即可得出PN=PQ,再用MN與y軸在PQ的同側(cè),建立不等式即可得出結(jié)論。
(3)點(diǎn)P在點(diǎn)A,B之間的拋物線上,根據(jù)(2)可知PQ的長(zhǎng),設(shè)正方形PQMN的周長(zhǎng)為C,根據(jù)C=4PQ,建立C與m的函數(shù)關(guān)系式,求出其頂點(diǎn)坐標(biāo),根據(jù)二次函數(shù)的性質(zhì),即可求得結(jié)論。
(4)分兩種情況討論計(jì)算即可求出結(jié)論。
【考點(diǎn)精析】掌握一次函數(shù)的性質(zhì)和二次函數(shù)的最值是解答本題的根本,需要知道一般地,一次函數(shù)y=kx+b有下列性質(zhì):(1)當(dāng)k>0時(shí),y隨x的增大而增大(2)當(dāng)k<0時(shí),y隨x的增大而減小;如果自變量的取值范圍是全體實(shí)數(shù),那么函數(shù)在頂點(diǎn)處取得最大值(或最小值),即當(dāng)x=-b/2a時(shí),y最值=(4ac-b2)/4a.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+2的圖象與x軸交于點(diǎn)A(﹣1,0)、B(4,0),與y軸交于點(diǎn)C.

(1)a=;b=;
(2)點(diǎn)P為該函數(shù)在第一象限內(nèi)的圖象上的一點(diǎn),過點(diǎn)P作PQ⊥BC于點(diǎn)Q,連接PC.
①求線段PQ的最大值;
②若以P、C、Q為頂點(diǎn)的三角形與△ABC相似,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,以邊AB上的一點(diǎn)O為圓心,以O(shè)A的長(zhǎng)為半徑的圓交邊AB于點(diǎn)D,BC與⊙O相切于點(diǎn)C.若⊙O的半徑為5,∠A=20°,則 的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圖①、圖②是8×5的正方形網(wǎng)格,線段AB、BC的端點(diǎn)均在格點(diǎn)上.按要求在圖①、圖②中以AB、BC為鄰邊各畫一個(gè)四邊形ABCD,使點(diǎn)D在格點(diǎn)上.要求所畫兩個(gè)四邊形不全等,且同時(shí)滿足四邊形ABCD是軸對(duì)稱圖形,點(diǎn)D到∠ABC兩邊的距離相等.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張師傅開車到某地送貨,汽車出發(fā)前油箱中有油50升,行駛一段時(shí)間,張師傅在加油站加油,然后繼續(xù)向目的地行駛.已知加油前、后汽車都勻速行駛,汽車行駛時(shí)每小時(shí)的耗油量一定.油箱中剩余油量Q(升)與汽車行駛時(shí)間t(時(shí))之間的函數(shù)圖象如圖所示.

(1)張師傅開車行駛小時(shí)后開始加油,本次加油升.
(2)求加油前Q與t之間的函數(shù)關(guān)系式.
(3)如果加油站距目的地210千米,汽車行駛速度為70千米/時(shí),張師傅要想到達(dá)目的地,油箱中的油是否夠用?請(qǐng)通過計(jì)算說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,若AB∥CD,EFAB 、CD分別相交于E、F,EP⊥EF,∠EFD的平分線與EP相交于點(diǎn)P,且∠BEP=40°,求∠EFP的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正五邊形ABCDE放入某平面直角坐標(biāo)系后,若頂點(diǎn)A,B,C,D的坐標(biāo)分別是(0,a),(﹣3,2),(b,m),(c,m),則點(diǎn)E的坐標(biāo)是( )

A.(2,﹣3)
B.(2,3)
C.(3,2)
D.(3,﹣2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校對(duì)七、八、九年級(jí)的學(xué)生進(jìn)行體育水平測(cè)試,成績(jī)?cè)u(píng)定為優(yōu)秀、良好、合格、不合格四個(gè)等第.為了解這次測(cè)試情況,學(xué)校從三個(gè)年級(jí)隨機(jī)抽取200名學(xué)生的體育成績(jī)進(jìn)行統(tǒng)計(jì)分析.相關(guān)數(shù)據(jù)的統(tǒng)計(jì)圖、表如下:

各年級(jí)學(xué)生成績(jī)統(tǒng)計(jì)表

優(yōu)秀

良好

合格

不合格

七年級(jí)

a

20

24

8

八年級(jí)

29

13

13

5

九年級(jí)

24

b

14

7

根據(jù)以上信息解決下列問題:

(1)在統(tǒng)計(jì)表中,a的值為 , b的值為
(2)在扇形統(tǒng)計(jì)圖中,八年級(jí)所對(duì)應(yīng)的扇形圓心角為度;
(3)若該校三個(gè)年級(jí)共有2000名學(xué)生參加考試,試估計(jì)該校學(xué)生體育成績(jī)不合格的人數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某村為了盡早擺脫貧窮落后的現(xiàn)狀,積極響應(yīng)國家號(hào)召,15位村民集資8萬元,承包了一些土地種植有機(jī)蔬菜和水果,種這兩種作物每公頃需要人數(shù)和投入資金如下表:

作物種類

每公頃所需人數(shù)/

每公頃投入資金/萬元

蔬菜

4

2

水果

5

3

在現(xiàn)有條件下,這15位村民應(yīng)承包多少公頃土地,怎樣安排能使每人都有事可做,并且資金正好夠用?

查看答案和解析>>

同步練習(xí)冊(cè)答案