【題目】如圖,在平面直角坐標(biāo)系中,已知,,,點在直線上,把沿著直線翻折,點落在點處,聯(lián)結(jié),如果直線與直線所構(gòu)成的夾角為60°,那么點的坐標(biāo)是____________
【答案】或或
【解析】
先由已知求出,得出,,分或兩種情況,
當(dāng)時,又分兩種情況:延長PQ交OB于點N,則,,由折疊得出,求出,由勾股定理得出,,即可得出P點的坐標(biāo);,,,即可得出P點的坐標(biāo);
當(dāng)時,Q點與A點重合,,,即可得出P點的坐標(biāo);
解:,,,
,,,,
,
,
,
,
,
直線PQ與直線AB所構(gòu)成的夾角為,
或,
當(dāng)時,分兩種情況:
如圖1所示:延長PQ交OB于點N,則,
,即,
由折疊得:,,
,
,
,
,
,
在中,,
,
點的坐標(biāo)為:;
如圖2所示:,,
,
點的坐標(biāo)為:;
當(dāng)時,如圖3所示:Q點與A點重合,
由折疊得:,
,
點的坐標(biāo)為:;
綜上所述:P點的坐標(biāo)為:或或.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,二次函數(shù)y=ax2+bx+c的圖象經(jīng)過點A(-1,0)、點B(3,0)、點C(4,y1),若點D(x2,y2)是拋物線上任意一點,有下列結(jié)論:①二次函數(shù)y=ax2+bx+c的最小值為-4a;②若-1≤x2≤4,則0≤y2≤5a;③若y2>y1,則x2>4;④一元二次方程cx2+bx+a=0的兩個根為-1和.其中正確結(jié)論的個數(shù)是( 。
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,研究發(fā)現(xiàn),科學(xué)使用電腦時,望向熒光屏幕畫面的“視線角” 約為,而當(dāng)手指接觸鍵盤時,肘部形成的“手肘角”約為.圖是其側(cè)面簡化示意圖,其中視線水平,且與屏幕垂直.
()若屏幕上下寬,科學(xué)使用電腦時,求眼睛與屏幕的最短距離的長.
()若肩膀到水平地面的距離,上臂,下臂水平放置在鍵盤上,其到地面的距離,請判斷此時是否符合科學(xué)要求的?
(參考數(shù)據(jù): , , , ,所有結(jié)果精確到個位)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,河的兩岸l1與l2相互平行,A、B是l1上的兩點,C、D是l2上的兩點,某人在點A處測得∠CAB=90°,∠DAB=30°,再沿AB方向前進20米到達點E(點E在線段AB上),測得∠DEB=60°,求C、D兩點間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水產(chǎn)經(jīng)銷商以10元/千克的價格收購了1000千克的鳊魚圍養(yǎng)在湖塘中(假設(shè)圍養(yǎng)期每條鳊魚的重量保持不變),據(jù)市場推測,經(jīng)過湖塘圍養(yǎng)后的鳊魚的市場價格每圍養(yǎng)一天能上漲1元/千克,在圍養(yǎng)過程中(最多圍養(yǎng)20天),平均每圍養(yǎng)一天有10千克的鳊魚會缺氧浮水。假設(shè)對缺氧浮水的鳊魚能以5元/千克的價格拋售完.
(1)若圍養(yǎng)x天后,該水產(chǎn)經(jīng)銷商將活著的鳊魚一次性出售,加上拋售的缺氧浮水鳊魚,能獲利8500元,則需要圍養(yǎng)多少天?
(2)若圍養(yǎng)期內(nèi),每圍養(yǎng)一天需支出各種費用450元,則該水產(chǎn)經(jīng)銷商最多可獲利多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解全校2400名學(xué)生到校上學(xué)的方式,在全校隨機抽取了若干名學(xué)生進行問卷調(diào)查.問卷給出了五種上學(xué)方式供學(xué)生選擇,每人只能選一項,且不能不選.將調(diào)查得到的結(jié)果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(均不完整).
(1)這次調(diào)查中,一共抽取了_____名學(xué)生;
(2)補全條形統(tǒng)計圖;
(3)估計全校所有學(xué)生中有多少人乘坐公交車上學(xué)?
(4)小明在上學(xué)的路上要經(jīng)過2個路口,每個路口都設(shè)有紅、黃、綠三種信號燈,假設(shè)在各路口遇到信號燈是相互獨立的.求小明在上學(xué)路上到第二個路口時第一次遇到紅燈的概率(請用“畫樹狀圖”或“列表”的方法寫出分析過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,,為邊的高,點在軸上,點在軸上,點在第一象限,若從原點出發(fā),沿軸向右以每秒1個單位長的速度運動,則點隨之沿軸下滑,并帶動在平面內(nèi)滑動,設(shè)運動時間為秒,當(dāng)到達原點時停止運動
(1)連接,線段的長隨的變化而變化,當(dāng)最大時,______.
(2)當(dāng)的邊與坐標(biāo)軸平行時,______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明大學(xué)畢業(yè)回家鄉(xiāng)創(chuàng)業(yè),第一期培植盆景與花卉各50盆售后統(tǒng)計,盆景的平均每盆利潤是160元,花卉的平均每盆利潤是19元,調(diào)研發(fā)現(xiàn):
①盆景每增加1盆,盆景的平均每盆利潤減少2元;每減少1盆,盆景的平均每盆利潤增加2元;②花卉的平均每盆利潤始終不變.
小明計劃第二期培植盆景與花卉共100盆,設(shè)培植的盆景比第一期增加x盆,第二期盆景與花卉售完后的利潤分別為W1,W2(單位:元)
(1)用含x的代數(shù)式分別表示W1,W2;
(2)當(dāng)x取何值時,第二期培植的盆景與花卉售完后獲得的總利潤W最大,最大總利潤是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com