(05年上海卷)(16分)
已知拋物線的焦點為F,A是拋物線上橫坐標為4、且位于軸上方的點,A到拋物線準線的距離等于5.過A作AB垂直于軸,垂足為B,OB的中點為M.
(1)求拋物線方程;
(2)過M作,垂足為N,求點N的坐標;
(3)以M為圓心,MB為半徑作圓M,當是軸上一動點時,討論直線AK與圓M的位置關系.
解析:(1) 拋物線y2=2px的準線為x=-,于是4+=5, ∴p=2.
∴拋物線方程為y2=4x.
(2)∵點A是坐標是(4,4), 由題意得B(0,4),M(0,2),
又∵F(1,0), ∴kFA=;MN⊥FA, ∴kMN=-,
則FA的方程為y=(x-1),MN的方程為y-2=-x,解方程組得x=,y=,
∴N的坐標(,).
(1) 由題意得, ,圓M.的圓心是點(0,2), 半徑為2,
當m=4時, 直線AK的方程為x=4,此時,直線AK與圓M相離.
當m≠4時, 直線AK的方程為y=(x-m),即為4x-(4-m)y-4m=0,
圓心M(0,2)到直線AK的距離d=,令d>2,解得m>1
∴當m>1時, AK與圓M相離;
當m=1時, AK與圓M相切;
當m<1時, AK與圓M相交.
科目:高中數學 來源: 題型:
(09年江蘇百校樣本分析)(10分)挑選空軍飛行學員可以說是“萬里挑一”,要想通過需過“五關”――目測、初檢、復檢、文考、政審等. 某校甲、乙、丙三個同學都順利通過了前兩關,有望成為光榮的空軍飛行學員. 根據分析,甲、乙、丙三個同學能通過復檢關的概率分別是0.5,0.6,0.75,能通過文考關的概率分別是0.6,0.5,0.4,通過政審關的概率均為1.后三關相互獨立.
(1)求甲、乙、丙三個同學中恰有一人通過復檢的概率;
(2)設通過最后三關后,能被錄取的人數為,求隨機變量的期望.
查看答案和解析>>
科目:高中數學 來源: 題型:
(08年周至二中三模理) 已知等差數列{an}的公差為2,若a1,a3,a4成等比數列,則a2等于 ( )
(A)-4 (B)-6 (C)-8 (D)-10
查看答案和解析>>
科目:高中數學 來源: 題型:
(08年濱州市質檢三文)(12分)已知函數.
(I)當m>0時,求函數的單調遞增區(qū)間;
(II)是否存在小于零的實數m,使得對任意的,都有,若存在,求m的范圍;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com