解:在CD上取一點(diǎn)F,使CF=AB.則小張?jiān)贏B 段用的時(shí)間與小王在CF用的時(shí)間相同,小張?jiān)贐E上用的時(shí)間是小王在EC和DF上用的時(shí)間的和.
因?yàn)锽E=
BC,EC=
BC.
所以小張?jiān)贐E上用的時(shí)間是BE÷5=
BC÷5=
BC,
小王在EC和DF上用的時(shí)間是
BC÷5+DF÷6=
BC+
DF,
因?yàn)樾堅(jiān)贏B 段用的時(shí)間與小王在CF用的時(shí)間相同,小張?jiān)贐E上用的時(shí)間是小王在EC和DF上用的時(shí)間的和,
所以
BC=
BC
DF,
得DF=
BC.
又因?yàn)樾⊥鯊腄到A用的時(shí)間比小張從A到D用的時(shí)間少9分,即9÷60=
(小時(shí)),這個(gè)時(shí)間差是小王在DF上下坡用的時(shí)間和小張?jiān)贒F上上坡用的時(shí)間差,得
DF=
÷(
),
=
=(千米),
又因DF=
BC,
所以BC=
×
=
(千米),
BE段用的時(shí)間是:BE÷5=
BC÷5=
×
×
=
(小時(shí)),
AB段用的時(shí)間是:1-
=
(小時(shí)),
AB段長:6×
=
(千米),
則CD段的長是:CF+DF=AB+DF=
+
=
(千米),
所以A到D的全長是:AB+BC+CD=
+
+
=
=11.5(千米),
答:A到D的全長是11.5千米.
分析:由題意知:BE是BC的
,CE是BC的
,說明DC這段下坡,比AB這段下坡所用的時(shí)間多,也就是DC這一段,比AB這一段長,因此可在DC上取一段CF和AB一樣長,如下圖:
由圖知:兩人相遇時(shí)小張?jiān)贏B 段用的時(shí)間與小王在CF用的時(shí)間相同,小張?jiān)贐E上用的時(shí)間是小王在EC和DF上用的時(shí)間的和,
又因BE=
BC、CE=
BC,找出DF與BC的關(guān)系是DF=
BC,又因?yàn)樾⊥鯊腄到A用的時(shí)間比小張從A到D用的時(shí)間少9分,這個(gè)時(shí)間差也就是小王在DF上下坡用的時(shí)間和小張?jiān)贒F上上坡用的時(shí)間差,由路程÷速度=時(shí)間,算出DF段的長度,從而算出BC的長度,根據(jù)BC與BE的關(guān)系,算出BE的長,從而算出他倆相遇是在BE上用的時(shí)間,在AB上用的時(shí)間也就知道了,也就算出AB的長,則A到D的路程也就算出來了.
點(diǎn)評(píng):解此題主要是找準(zhǔn)他倆相等時(shí)間里分別走的路段,并且明白小王比小張少用的9分鐘是兩人在DF段正好上下坡相反.