如圖:某公園的外輪廓是四邊形,被對(duì)角線AC、BD分成  四個(gè)部分,三角形AOD的面積是1平方千米,三角形BOC的面積是2平方千米,三角形COD的面積是3平方千米,公園陸地的面積是6平方千米,那么人工湖的面積是多少平方千米?
分析:人工湖的面積是公園的總面積減去陸地面積,那么這里只要求出這個(gè)四邊形的面積即可:
(1)因?yàn)槿切蜝OC的面積是2平方千米,三角形COD的面積是3平方千米,根據(jù)高一定時(shí),三角形的面積與底成正比例的性質(zhì)可得:BO:DO=2:3,
(2)再根據(jù)高一定時(shí),三角形的面積與底成正比例的性質(zhì)可得:三角形AOB的面積與三角形AOD的面積之比是2:3,由此即可求出三角形AOB的面積.
解答:解:因?yàn)槿切蜝OC的面積是2平方千米,三角形COD的面積是3平方千米,
所以可得:BO:DO=2:3,
則:三角形AOB的面積與三角形AOD的面積之比是2:3,因?yàn)槿切蜛OD的面積是1平方千米,
所以三角形AOB的面積是:1×2÷3=
2
3
(平方千米),
所以人工湖的面積是:1+2+3+
2
3
-6=
2
3
(平方千米),
答:人工湖的面積是
2
3
平方千米.
點(diǎn)評(píng):此題考查了高一定時(shí),三角形的面積與高成正比例的性質(zhì)的綜合應(yīng)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

如圖,某公園的外輪廓是四邊形ABCD,被對(duì)角線AC、BD分成四個(gè)部分.△AOB的面積是2平方千米,△COD的面積是3平方千米,公園陸地面積為6.92平方千米,那么人工湖的面積是
5.08
5.08
平方千米.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

如圖,某公園的外輪廓是四邊形ABCD,被對(duì)角線AC、BD分成四個(gè)部分.△AOB的面積是9平方千米,△COD的面積是16平方千米,公園陸地面積為5平方千米,那么人工湖的面積是多少平方千米?

查看答案和解析>>

同步練習(xí)冊(cè)答案