0  444949  444957  444963  444967  444973  444975  444979  444985  444987  444993  444999  445003  445005  445009  445015  445017  445023  445027  445029  445033  445035  445039  445041  445043  445044  445045  445047  445048  445049  445051  445053  445057  445059  445063  445065  445069  445075  445077  445083  445087  445089  445093  445099  445105  445107  445113  445117  445119  445125  445129  445135  445143  447090 

8..如圖,等腰直角△ABC,沿其斜邊AB邊上的高CD對折,使△ACD與△BCD所在的平面垂直,此時∠ACB等于BA.45°  B.60°  C.90°  D.120°

試題詳情

7.的值為BA.  D.1

試題詳情

6.長方體ABCD-A1B1C1D1中,E、F分別為C1B1,D1B1的中點,且AB=BC,AA1=2AB,則CEBF所成角的余弦值是DA.   B.      C.     D.

試題詳情

5.數(shù)列{an}為等差數(shù)列,前n項和為Sn,數(shù)列{bn}為等差數(shù)列,前n項和為Tn,且 B

A.-     B.      C.-      D.

試題詳情

4.(1+x)3+(1+x)4+……+(1+x)50=a0+a1x+a2x2+……+a50x50,則a3= BA.   B.  C.  D.2

試題詳情

3.足球比賽的計分規(guī)則是:勝一場得3分,平一場得1分,負一場得0分,那么一個隊打14場共得19分的情況共有BA.3種       B.4種       C.5種        D.6種

試題詳情

2.棱長均為a的三棱錐A-BCD內(nèi)的一點P到各面的距離之和等于C A.a  B.a  C.  D.不能確定

試題詳情

1.正方體ABCD-A1B1C1D1中,E、FAA1AB上的點,若B1EFE,則C1E與EF所成角是C

A.60°  B.45°C.90°  D.不確定

試題詳情

21.解:設(shè)甲預(yù)報站預(yù)測準確為事件,乙預(yù)報站預(yù)測準確為事件

1)甲、乙兩個天氣預(yù)報站同時預(yù)報準確的概率為:

;     

2)至少有一個預(yù)報站預(yù)報準確的概率=  

3)如果甲站獨立預(yù)報三次,其中恰有兩次預(yù)報準確的概率為

          

  22.1)證明:取的中點,連、

    ∵,

平面,

又∵分別是、的中點,

⊥平面,∵平面

  ,又∵,且的中點,故由平面幾  何知識可知,又∵,∴  ∴、共面,

⊥平面,∴.           

  2)解:作,∵平面,∴,∴平面,作,連,由三垂線定理得,∴為二面角的一個平面角,

中,=

又∵平面,∴

,∴⊥平面,∴

易得=,=.  ∴在中, =,

又在中,=,.    

23 解:(1)當n=1時,左邊=1+1=2=,右邊=,不等式顯然成立.  (2)假設(shè)n=k時,不等式成立,即  (1+1)(1+(1/4))(1+(1/7))…(1+1/(3k-2))>.?  那么,當n=k+1時,  [(1+1)(1+(1/4))(1+(1/7))…(1+1/(3k-2))](1+1/(3k+1))>(1+1/(3k+1))=·(3k+2)/(3k+1). ?∵ (·(3k+2)/(2k+1))3-()3=((3k+2)3/(3k+1)2)-(3k+4)=((3k+2)3-(3k+1)2(3k+4)/(3k+1)2)=(9k+4)/(3k+1)2)>0,  ∴ ·(3k+2)/(3k+1)>. ? ∴ 當n=k+1時,不等式亦成立.  由(1)、(2)證明知,不等式對一切n∈N都成立.  說明:在第二步證明·(3k+2)/(3k+1)>時,我們還用到了比較法.

試題詳情

20.(1)取一次就能安裝的概率為取二次就能安裝的概率:

最多取2次零件就能安裝的概率為

(2)由于隨機變量ξ表示取得合格品前已取出的次品數(shù),所以可能的取值為0、1、2;

∴ξ的分布列為

ξ
0
1
2
P



試題詳情


同步練習(xí)冊答案