20.解(1)令 .則 查看更多

 

題目列表(包括答案和解析)

解答題:解答應(yīng)寫出文字說明、證明過程或演算步驟

(理科生做)某商場舉行抽獎促銷活動,抽獎規(guī)則是:從裝有9個白球、1個紅球的箱子中每次隨機(jī)地摸出一個球,記下顏色后放回,摸出一個紅球可獲得獎金10元;摸出2個紅球可獲得獎金50元.現(xiàn)有甲,乙兩位顧客,規(guī)定:甲摸一次,乙摸兩次,令x 表示甲,乙摸球后獲得的獎金總額.求:

(1)

x 的分布列;

(2)

x 的的數(shù)學(xué)期望.

查看答案和解析>>

已知直三棱柱中, , , 的交點(diǎn), 若.

(1)求的長;  (2)求點(diǎn)到平面的距離;

(3)求二面角的平面角的正弦值的大小.

【解析】本試題主要考查了距離和角的求解運(yùn)用。第一問中,利用ACCA為正方形, AC=3

第二問中,利用面BBCC內(nèi)作CDBC, 則CD就是點(diǎn)C平面ABC的距離CD=,第三問中,利用三垂線定理作二面角的平面角,然后利用直角三角形求解得到其正弦值為

解法一: (1)連AC交AC于E, 易證ACCA為正方形, AC=3 ……………  5分

(2)在面BBCC內(nèi)作CDBC, 則CD就是點(diǎn)C平面ABC的距離CD= … 8分

(3) 易得AC面ACB, 過E作EHAB于H, 連HC, 則HCAB

CHE為二面角C-AB-C的平面角. ………  9分

sinCHE=二面角C-AB-C的平面角的正弦大小為 ……… 12分

解法二: (1)分別以直線CB、CC、CA為x、y為軸建立空間直角坐標(biāo)系, 設(shè)|CA|=h, 則C(0, 0, 0), B(4, 0, 0), B(4, -3, 0), C(0, -3, 0), A(0, 0, h), A(0, -3, h), G(2, -, -) ………………………  3分

=(2, -, -), =(0, -3, -h(huán))  ……… 4分

·=0,  h=3

(2)設(shè)平面ABC得法向量=(a, b, c),則可求得=(3, 4, 0) (令a=3)

點(diǎn)A到平面ABC的距離為H=||=……… 8分

(3) 設(shè)平面ABC的法向量為=(x, y, z),則可求得=(0, 1, 1) (令z=1)

二面角C-AB-C的大小滿足cos== ………  11分

二面角C-AB-C的平面角的正弦大小為

 

查看答案和解析>>

設(shè)函數(shù)f(x)=lnxgx)=ax+,函數(shù)f(x)的圖像與x軸的交點(diǎn)也在函數(shù)g(x)的圖像上,且在此點(diǎn)處f(x)與g(x)有公切線.[來源:學(xué)?啤>W(wǎng)]

(Ⅰ)求a、b的值; 

(Ⅱ)設(shè)x>0,試比較f(x)與g(x)的大小.[來源:學(xué),科,網(wǎng)Z,X,X,K]

【解析】第一問解:因為f(x)=lnx,gx)=ax+

則其導(dǎo)數(shù)為

由題意得,

第二問,由(I)可知,令。

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當(dāng)時,,有;當(dāng)時,,有;當(dāng)x=1時,,有

解:因為f(x)=lnx,gx)=ax+

則其導(dǎo)數(shù)為

由題意得,

(11)由(I)可知,令

,  …………8分

是(0,+∞)上的減函數(shù),而F(1)=0,            …………9分

∴當(dāng)時,,有;當(dāng)時,,有;當(dāng)x=1時,,有

 

查看答案和解析>>

D

解析:當(dāng)x>0時,,即,

則函數(shù)在區(qū)間(0,+∞)上為減函數(shù),又在定義域上是奇函數(shù),

∴函數(shù)在定義域上是偶函數(shù),且,則>0在(0,+∞)上的解集是(0,2);

函數(shù)是定義域上的奇函數(shù),則>0的解集是(-∞,-2)∪(0,2).

查看答案和解析>>

D

解析:當(dāng)x>0時,,即

則函數(shù)在區(qū)間(0,+∞)上為減函數(shù),又在定義域上是奇函數(shù),

∴函數(shù)在定義域上是偶函數(shù),且,則>0在(0,+∞)上的解集是(0,2);

函數(shù)是定義域上的奇函數(shù),則>0的解集是(-∞,-2)∪(0,2).

查看答案和解析>>


同步練習(xí)冊答案