(2)可求. 查看更多

 

題目列表(包括答案和解析)

求下列事件的概率:
(1)第一盒中有4個(gè)白球與2個(gè)黃球,第二盒中有3個(gè)白球與3個(gè)黃球.分別從每個(gè)盒中取出1個(gè)球,求取出2個(gè)球中有1個(gè)白球與1個(gè)黃球的概率;
(2)經(jīng)過(guò)某十字路口的汽車(chē)可能直行,可能左轉(zhuǎn)也可能右轉(zhuǎn).如果3輛汽車(chē)過(guò)這個(gè)十字路口,求3輛車(chē)中2輛右轉(zhuǎn),1輛直行的概率.

查看答案和解析>>

求Sn=1×2+2×3+3×4+…+n(n+1)(n∈N*)可用如下方法:
1×2=
1
3
(1×2×3-0×1×2)
2×3=
1
3
(2×3×4-1×2×3)
3×4=
1
3
(3×4×5-2×3×4)
n(n+1)=
1
3
[n(n+1)(n+2)-(n-1)n(n+1)]

將以上各式相加,得Sn=
1
3
n(n+1)(n+2),仿此方法,求Sn=1×2×3+2×3×4+…+n(n+1)(n+2)(n∈N*).

查看答案和解析>>

求證:對(duì)于任意的正整數(shù)n,(1+
2
)
n
必可表示成
s
+
s-1
的形式,其中s∈N+

查看答案和解析>>

求在區(qū)間[a,b](b>a,a,b∈N*)上分母是3的不可約分?jǐn)?shù)之和.

查看答案和解析>>

可以證明,對(duì)任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項(xiàng)組成的數(shù)列a1,a2,a3每項(xiàng)均非零,且對(duì)任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿(mǎn)足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項(xiàng)均非零,且對(duì)任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項(xiàng)和為Sn.求證:an+12-an+1=2Sn,n∈N*
(3)是否存在滿(mǎn)足(2)中條件的無(wú)窮數(shù)列{an},使得a2011=2009?若存在,寫(xiě)出一個(gè)這樣的無(wú)窮數(shù)列(不需要證明它滿(mǎn)足條件); 若不存在,說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案