由底面可得. 查看更多

 

題目列表(包括答案和解析)

已知四棱錐的底面為直角梯形,,底面,且,,的中點(diǎn)。

(1)證明:面

(2)求所成的角;

(3)求面與面所成二面角的余弦值.

【解析】(1)利用面面垂直的性質(zhì),證明CD⊥平面PAD.

(2)建立空間直角坐標(biāo)系,寫出向量的坐標(biāo),然后由向量的夾角公式求得余弦值,從而得所成角的大小.

(3)分別求出平面的法向量和面的一個(gè)法向量,然后求出兩法向量的夾角即可.

 

查看答案和解析>>

如圖,長(zhǎng)方體中,底面是正方形,的中點(diǎn),是棱上任意一點(diǎn)。

(Ⅰ)證明: ;

(Ⅱ)如果=2 ,=,, 求 的長(zhǎng)。

 【解析】(Ⅰ)因底面是正方形,故,又側(cè)棱垂直底面,可得,而,所以,因,所以,又,所以 ;

(Ⅱ)因=2 ,=,,可得,,設(shè),由,即,解得,即 的長(zhǎng)為。

 

查看答案和解析>>

在四棱錐中,平面,底面為矩形,.

(Ⅰ)當(dāng)時(shí),求證:;

(Ⅱ)若邊上有且只有一個(gè)點(diǎn),使得,求此時(shí)二面角的余弦值.

【解析】第一位女利用線面垂直的判定定理和性質(zhì)定理得到。當(dāng)a=1時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………2分

,得證。

第二問,建立空間直角坐標(biāo)系,則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)……4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》

要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得

由此知道a=2,  設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

解:(Ⅰ)當(dāng)時(shí),底面ABCD為正方形,

又因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012070912265168707359/SYS201207091227226245550949_ST.files/image014.png">,………………3分

(Ⅱ) 因?yàn)锳B,AD,AP兩兩垂直,分別以它們所在直線為X軸、Y軸、Z軸建立坐標(biāo)系,如圖所示,

則B(1,0,1)D(0,a,0)C(1,a,0)P(0,0,1)…………4分

設(shè)BQ=m,則Q(1,m,0)(0《m《a》要使,只要

所以,即………6分

由此可知時(shí),存在點(diǎn)Q使得

當(dāng)且僅當(dāng)m=a-m,即m=a/2時(shí),BC邊上有且只有一個(gè)點(diǎn)Q,使得由此知道a=2,

設(shè)平面POQ的法向量為

,所以    平面PAD的法向量

的大小與二面角A-PD-Q的大小相等所以

因此二面角A-PD-Q的余弦值為

 

查看答案和解析>>

如圖所示的長(zhǎng)方體中,底面是邊長(zhǎng)為的正方形,的交點(diǎn),是線段的中點(diǎn).

(Ⅰ)求證:平面;

(Ⅱ)求證:平面;

(Ⅲ)求二面角的大小.

【解析】本試題主要考查了線面平行的判定定理和線面垂直的判定定理,以及二面角的求解的運(yùn)用。中利用,又平面,平面,∴平面,又,∴平面. 可得證明

(3)因?yàn)椤?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2012061921381634452104/SYS201206192139454539928006_ST.files/image021.png">為面的法向量.∵,

為平面的法向量.∴利用法向量的夾角公式,,

的夾角為,即二面角的大小為

方法一:解:(Ⅰ)建立如圖所示的空間直角坐標(biāo)系.連接,則點(diǎn)、

,又點(diǎn),,∴

,且不共線,∴

平面,平面,∴平面.…………………4分

(Ⅱ)∵,

,,即,

,∴平面.   ………8分

(Ⅲ)∵,,∴平面

為面的法向量.∵,,

為平面的法向量.∴,

的夾角為,即二面角的大小為

 

查看答案和解析>>

如圖,在直三棱柱中,底面為等腰直角三角形,,為棱上一點(diǎn),且平面平面.

(Ⅰ)求證:點(diǎn)為棱的中點(diǎn);

(Ⅱ)判斷四棱錐的體積是否相等,并證明。

【解析】本試題主要考查了立體幾何中的體積問題的運(yùn)用。第一問中,

易知,。由此知:從而有又點(diǎn)的中點(diǎn),所以,所以點(diǎn)為棱的中點(diǎn).

(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D為BB1中點(diǎn),可以得證。

(1)過點(diǎn)點(diǎn),取的中點(diǎn),連。且相交于,面內(nèi)的直線,!3分

且相交于,且為等腰三角形,易知,。由此知:,從而有共面,又易知,故有從而有又點(diǎn)的中點(diǎn),所以,所以點(diǎn)為棱的中點(diǎn).               …6分

(2)相等.ABC-A1B1C1為直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,

∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D為BB1中點(diǎn),∴VA1-B1C1CD=VC-A1ABD

 

查看答案和解析>>


同步練習(xí)冊(cè)答案