(Ⅲ)在上是否存在點(diǎn),使得∥平面, 查看更多

 

題目列表(包括答案和解析)

平面直角坐標(biāo)系xOy中,動(dòng)點(diǎn)P從點(diǎn)P0(4,0)出發(fā),運(yùn)動(dòng)過程中,到定點(diǎn)F(-2,0)的距離與到定直線l:x=-8的距離之比為常數(shù).
①求點(diǎn)P的軌跡方程;
②在軌跡上是否存在點(diǎn)M(s,t),使得以M為圓心且經(jīng)過定點(diǎn)F(-2,0)的圓與直線x=8相交于兩點(diǎn)A、B?若存在,求s的取值范圍;若不存在,說明理由.

查看答案和解析>>

平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),已知兩點(diǎn)M(1,-3)、N(5,1),若點(diǎn)C滿足
OC
=t
OM
+(1-t)
ON
(t∈R),點(diǎn)C的軌跡與拋物線:y2=4x交于A、B兩點(diǎn).
(Ⅰ)求證:
OA
OB
;
(Ⅱ)在x軸上是否存在一點(diǎn)P(m,0)(m∈R),使得過P點(diǎn)的直線交拋物線于D、E兩點(diǎn),并以該弦DE為直徑的圓都過原點(diǎn).若存在,請(qǐng)求出m的值及圓心的軌跡方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

平面內(nèi)與兩定點(diǎn)A1(-a,0),A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點(diǎn)的軌跡,加上A1、A2兩點(diǎn)所成的曲線C可以是圓、橢圓成雙曲線.
(Ⅰ)求曲線C的方程,并討論C的形狀與m值的關(guān)系;
(Ⅱ)當(dāng)m=-1時(shí),對(duì)應(yīng)的曲線為C1;對(duì)給定的m∈(-1,0)∪(0,+∞),對(duì)應(yīng)的曲線為C2,設(shè)F1、F2是C2的兩個(gè)焦點(diǎn).試問:在C1上,是否存在點(diǎn)N,使得△F1NF2的面積S=|m|a2.若存在,求tanF1NF2的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

平面內(nèi)與兩定點(diǎn)A1(-a,0)、A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點(diǎn)的軌跡,加上A1、A2兩點(diǎn)所成的曲線C可以是圓、橢圓或雙曲線,
(1)求曲線C的方程,并討論C的形狀與m值的關(guān)系;
(2)當(dāng)m=-1時(shí),對(duì)應(yīng)的曲線為C1:對(duì)給定的m∈(-1,0)∪(0,+∞),對(duì)應(yīng)的曲線為C2.設(shè)F1、F2是C2的兩個(gè)焦點(diǎn).試問:在C1上,是否存在點(diǎn)N,使得△F1NF2的面積S=|m|a2。若存在,求tanF1NF2的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

平面內(nèi)與兩定點(diǎn)A1(-a,0)、A2(a,0)(a>0)連線的斜率之積等于非零常數(shù)m的點(diǎn)的軌跡,加上A1、A2兩點(diǎn)所成的曲線C可以是圓、橢圓或雙曲線。
(1)求曲線C的方程,并討論C的形狀與m值的關(guān)系;
(2)當(dāng)m=-1時(shí),對(duì)應(yīng)的曲線為C1:對(duì)給定的m∈(-1, 0)∪(0,+∞),對(duì)應(yīng)的曲線為C2。設(shè)F1、F2是C2的兩個(gè)焦點(diǎn)。試問:在C1上,是否存在點(diǎn)N,使得△F1NF2的面積S=|m|a2。若存在,求tanF1NF2的值;若不存在,請(qǐng)說明理由。

查看答案和解析>>


同步練習(xí)冊(cè)答案