在空間中.有如下命題:①互相平行的兩條直線在同一平面內(nèi)的射影必然是互相平行的兩條直線,②若平面內(nèi)任意一條直線m//平面.則平面//平面,③若平面與平面的交線為m.平面內(nèi)的直線n⊥直線m.則直線n ⊥平面,④若點(diǎn)P到三角形三個(gè)頂點(diǎn)的距離相等.則點(diǎn)P在該三角形所在平面上的射影是該三角形的外心. 其中正確命題的個(gè)數(shù)為 查看更多

 

題目列表(包括答案和解析)

6、在空間中,有如下命題:
①互相平行的兩條直線在同一個(gè)平面內(nèi)的射影必然是互相平行的兩條直線;
②若平面α∥平面β,則平面α內(nèi)任意一條直線m∥平面β;
③若平面α與平面β的交線為m,平面α內(nèi)的直線n⊥直線m,則直線n⊥平面β.
其中不正確命題的個(gè)數(shù)為( 。

查看答案和解析>>

5、在空間中,有如下命題:①互相平行的兩條直線在同一平面內(nèi)的射影必然是互相平行的兩條直線;②若平面α內(nèi)任意一條直線都平行平面β,則平面α∥平面β;③若平面α與平面β的交線為m,平面β內(nèi)的直線n⊥直線m,則直線n⊥平面α;④若平面α內(nèi)有兩條相交直線都和平面β內(nèi)一條直線l垂直,則α⊥β.其中正確命題的個(gè)數(shù)為(  )

查看答案和解析>>

在空間中,有如下命題:
①互相平行的兩條直線在同一個(gè)平面內(nèi)的射影必然是互相平行的兩條直線;
②若平面α∥β,則平面α內(nèi)任意一條直線m∥β;
③若平面α與平面β的交線為m,平面α內(nèi)的直線n⊥直線m,則直線n⊥平面β;
④若平面α內(nèi)的三點(diǎn)A、B、C到平面β的距離相等,則α∥β.
其中正確命題的個(gè)數(shù)為( 。﹤(gè).

查看答案和解析>>

在空間中,有如下命題:
①互相平行的兩條直線在同一個(gè)平面內(nèi)的射影必然是互相平行的兩條直線;
②若平面α∥平面β,則平面α內(nèi)任意一條直線m∥平面β;
③若平面α與平面β的交線為m,平面α內(nèi)的直線n⊥直線m,則直線n⊥平面β;
④若平面α內(nèi)的三點(diǎn)A,B,C到平面β的距離相等,則α∥β.其中正確命題的個(gè)數(shù)為
 

查看答案和解析>>

在空間中,有如下命題:

①互相平行的兩條直線在同一個(gè)平面內(nèi)的射影必然是互相平行的兩條直線;

②若平面;

③若平面;

④若平面內(nèi)的三點(diǎn)A,B,C到平面的距離相等,則.

其中正確命題的個(gè)數(shù)為(    )個(gè).                                         ( 。

A.0                B.1                C.2                D.3

 

查看答案和解析>>

一.選擇題:(本大共12小題,每小題5分,在每小題的四個(gè)選項(xiàng)中只有一個(gè)是正確的.)

題號(hào)

1

2

3

4

5

6

7

8

9

10

11

12

答案

B

D

D

C

D

A

B

C

B

C

A

D

二、填空題(本大題4個(gè)小題,每小題4分,共16分,只填結(jié)果,不要過程)

13、         3                   14、         9           

15、        240                 16、                   

三.解答題(本大題共6個(gè)小題,共74分,解答應(yīng)寫出文字說明、證明過程或演算步驟。)

17、證明:(1)連結(jié),設(shè)

連結(jié), 是正方體   是平行四邊形

                                       2分

分別是的中點(diǎn),

是平行四邊形                                         4分

,

∥面                                              6分

(2)                              7分

,                           

                                                  9分

同理可證,                                          11分

                                            12分

18.解:(1)=3125;------4分(2)A=120; ------8分(3)=1200-----12分.

19.(1)連接EO,EO∥PC,又6ec8aac122bd4f6e平面6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e平面6ec8aac122bd4f6e

平面6ec8aac122bd4f6e平面6ec8aac122bd4f6e               -----------------------------------------------------6分

6ec8aac122bd4f6e(2)ABCD為菱形,6ec8aac122bd4f6e,過O在平面OEB內(nèi)作OF6ec8aac122bd4f6eBE于F,連OF, 6ec8aac122bd4f6eAFO為二面角6ec8aac122bd4f6e的平面角, tan6ec8aac122bd4f6eAFO =                    -------12分

20.(1)   ---------4分

   .(2) ---------8分

   .(3) ---------12分

 21.解:(1)過A作BC的反向延長(zhǎng)線的垂線,交于點(diǎn)E,連ED,

∵面ACB⊥面BCD,∴AE⊥面BCD   又AB=BC=BD,

∠ABC=∠DBC=1200

∴AE=ED=          ∴∠ADE= ----------4分

(2)過D作EC的平行線與過C平行于ED的直線交于F。

由(1)知,EDFC為矩形 ∵DF⊥DE, ∴DF⊥AD,即BC⊥AD ∴ 900-即為所求   ----8分

(3)過E作EG⊥BD于G,連結(jié)AG

由三垂線定理知,AG⊥BD。由                                      ,            

 在Rt△AEG中,tan∠AGE=2, ∠AGE=arctan2

∴二面角A―BD―C的度數(shù)為 π-arctan2      -   -------12分

22. (1)∵B1D⊥面ABC    ∴B1D⊥AC

  又∵AC⊥BC 且B1D∩BC=D ∴平面   -------4分

(2)連結(jié)B1C和BC1     平面

∴B1C ⊥BC1  四邊形是菱形   ---------6分

∵B1D⊥BC  且D為的中點(diǎn) ∴B1C=BB1=BC   ∴=  ------9分

(3)過C1在平面內(nèi)作C1O∥B1D,交BC的延長(zhǎng)線于O點(diǎn),

過O作OM⊥AB于M點(diǎn),連結(jié)C1M∴C1O⊥平面,∴C1M⊥AB,   

∴∠OMC1是二面角的平面角---------11分

設(shè)=3a ,  ∵

∴BD=a , C1O= B1D=a , BO=4a

∵∠CBA= , ∴OM=a =B1D , ∴∠OMC1=

∴二面角的大小為     ---------14分

 


同步練習(xí)冊(cè)答案