(1)求拋物線的解析式. 查看更多

 

題目列表(包括答案和解析)

拋物線的解析式y(tǒng)=ax2+bx+c滿足如下四個條件:abc=0;a+b+c=3;ab+bc+ca=-4;a精英家教網(wǎng)<b<c.
(1)求這條拋物線的解析式;
(2)設(shè)該拋物線與x軸的兩個交點分別為A、B(A在B的左邊),與y軸的交點為C.P是拋物線上第一象限內(nèi)的點,AP交y軸于點D,當OD=1.5時,試比較S△AOD與S△DPC的大小.

查看答案和解析>>

拋物線的解析式y(tǒng)=ax2+bx+c滿足如下四個條件:abc=0;a+b+c=3;ab+bc+ca=-3;a<b<c
(1)求這條拋物線的解析式;
(2)設(shè)該拋物線與x軸的兩個交點分別為A、B(A在B的左邊),與y軸的交點為C.
①在第一象限內(nèi),這條拋物線上有一點P,AP交y軸于點D,當OD=1.5時,試比較S△APC與S△AOC的大。
②在x軸的上方,這條拋物線上是否存在點Pn,使得S△APnC=S△AOC?若存在,請求出點Pn的坐標;若不存在,請說明理由.
精英家教網(wǎng)精英家教網(wǎng)

查看答案和解析>>

拋物線的解析式y(tǒng)=ax2+bx+c滿足如下四個條件:abc=0;a+b+c=3;ab+bc+ca=-4;a<b<c.
(1)求這條拋物線的解析式;
(2)設(shè)該拋物線與x軸的兩個交點分別為A、B(A在B的左邊),與y軸的交點為C.P是拋物線上第一象限內(nèi)的點,AP交y軸于點D,當OD=1.5時,試比較S△AOD與S△DPC的大。

查看答案和解析>>

拋物線的解析式y(tǒng)=ax2+bx+c滿足如下四個條件:abc=0;a+b+c=3;ab+bc+ca=-3;a<b<c
(1)求這條拋物線的解析式;
(2)設(shè)該拋物線與x軸的兩個交點分別為A、B(A在B的左邊),與y軸的交點為C.
①在第一象限內(nèi),這條拋物線上有一點P,AP交y軸于點D,當OD=1.5時,試比較S△APC與S△AOC的大小.
②在x軸的上方,這條拋物線上是否存在點Pn,使得S△APnC=S△AOC?若存在,請求出點Pn的坐標;若不存在,請說明理由.

查看答案和解析>>

當拋物線的解析式中含有字母系數(shù)時,隨著系數(shù)中字母取值的不同,拋物線的頂點坐標也將發(fā)生變化.例如:由拋物線y=x2-2mx+m2+2m-1…(1)
得:y=(x-m)2+2m-1…(2)
∴拋物線的頂點坐標為(m,2m-1),設(shè)頂點為P(x0,y0),則:數(shù)學(xué)公式
當m的值變化時,頂點橫、縱坐標x0,y0的值也隨之變化,將(3)代入(4)
得:y0=2x0-1.…(5)
可見,不論m取任何實數(shù)時,拋物線的頂點坐標都滿足y=2x-1.
解答問題:
①在上述過程中,由(1)到(2)所用的數(shù)學(xué)方法是______,其中運用的公式是______.由(3)、(4)得到(5)所用的數(shù)學(xué)方法是______.
②根據(jù)閱讀材料提供的方法,確定拋物線y=x2-2mx+2m2-4m+3的頂點縱坐標y與橫坐標x之間的函數(shù)關(guān)系式.
③是否存在實數(shù)m,使拋物線y=x2-2mx+2m2-4m+3與x軸兩交點A(x1,0)、B(x2,0)之間的距離為AB=4,若存在,求出m的值;若不存在,說明理由(提示:|x1-x2|2=(x1+x22-4x1x2).

查看答案和解析>>


同步練習(xí)冊答案