大學畢業(yè)的小張到甲.乙.丙三個不同的單位應聘.各單位是否錄用他相互獨立.其被錄用的概率分別為..(允許小張被多個單位同時錄用) (1)小張沒有被錄用的概率, (2)求小張恰2個單位同時錄用的概率, (3)求小張至少被一個單位錄取的概率. 查看更多

 

題目列表(包括答案和解析)

大學畢業(yè)的小張到甲、乙、丙三個單位應聘,各單位是否錄用他相互獨立,其被錄用的概率分別為、、(允許小張被多個單位同時錄用).
(1)小張沒有被錄用的概率;
(2)求小張被2個單位同時錄用的概率;
(3)設沒有錄用小張的單位個數(shù)為ξ,求ξ的分布列和它的數(shù)學期望.

查看答案和解析>>

大學畢業(yè)的小張到甲、乙、丙三個單位應聘,各單位是否錄用他相互獨立,其被錄用的概率分別為、、(允許小張被多個單位同時錄用).

(1)小張沒有被錄用的概率;

(2)求小張被2個單位同時錄用的概率;

(3)設沒有錄用小張的單位個數(shù)為ξ,求ξ的分布列和它的數(shù)學期望.

查看答案和解析>>

大學畢業(yè)生小張到甲、乙、丙三個單位應聘,各單位是否錄用他是相互獨立的,其被錄用的概率分別為,(允許小張被多個單位同時錄用),

(1)求小張沒有被錄用的概率;

(2)求小張恰被兩個單位錄用的概率。

查看答案和解析>>

大學畢業(yè)生小張到甲、乙、丙、丁四個單位應聘,各單位是否錄用他相互獨立.其被錄用的概率分別為、、.(允許小張被多個單位同時錄用)

(1)求小張沒有被錄用的概率;

(2)求小張恰被三個單位錄用的概率;

(理)(3)設錄用小張的單位個數(shù)為ξ,求ξ的分布列和它的數(shù)學期望.

查看答案和解析>>

大學畢業(yè)的小張到甲、乙、丙三個單位應聘,各單位是否錄用他相互獨立,其被錄用的概率分別為
4
5
、
2
3
、
3
4
(允許小張被多個單位同時錄用).
(1)小張沒有被錄用的概率;
(2)求小張被2個單位同時錄用的概率;
(3)設沒有錄用小張的單位個數(shù)為ξ,求ξ的分布列和它的數(shù)學期望.

查看答案和解析>>

    1. <menuitem id="igayk"></menuitem>
        <nav id="igayk"><acronym id="igayk"></acronym></nav>
      1. <form id="igayk"></form>

        19.解:(1)連接B1D1,ABCD―A1B1C1D1為四棱柱,

        ,

        則在四邊形BB1D1D中(如圖),

        得△D1O1B1≌△B1BO,可得∠D1O1B1=∠OBB1=90°,

        即D1O1⊥B1O

           (2)解法一:連接OD1,△AB1C,△AD1C均為等腰

        三角形,

        且AB1=CB,AD1=CD1,所有OD1⊥AC,B1O⊥AC,

        顯然:∠D1OB1為所求二面角D1―AC―B1的平面角,

        由:OD1=OB1=B1D=2知

        解法二:由ABCD―A1B1C1D1為四棱柱,得面BB1D1D⊥面ABCD

        所以O1D1在平面ABCD上的射影為BD,由四邊形ABCD為正方形,AC⊥BD,由三垂線定理知,O1D1⊥AC。可得D1O1⊥平面AB1C。

        又因為B1O⊥AC,所以∠D1OB1所求二面角D1―AC―B1的平面角,

        20.解:(1)曲線C上任意一點M到點F(0,1)的距離比它到直線的距離小1,

        可得|MF|等于M到y(tǒng)=-1的距離,由拋物線的定義知,M點的軌跡為

           (2)當直線的斜率不存在時,它與曲線C只有一個交點,不合題意,

            當直線m與x軸不垂直時,設直線m的方程為

           代入    ①

            恒成立,

            設交點A,B的坐標分別為

        ∴直線m與曲線C恒有兩個不同交點。

            ②        ③

        故直線m的方程為

        21.解:(1)由已知得

           

           (2)

           

           

           (3)

           

         


        同步練習冊答案