如圖.兩等圓⊙O和⊙O′相外切.過O作⊙O′的兩條切線OA.OB.A.B是切點.則∠AOB等于 查看更多

 

題目列表(包括答案和解析)

如圖所示,兩等圓⊙O和⊙相外切,過O作⊙的兩條切線OA、OB,A、B是切點,則∠AOB等于多少?

查看答案和解析>>

如圖所示,兩等圓⊙O和⊙O′相外切,過O作⊙O′的兩條切線OA、OB,A、B是切點,則∠AOB等于
[     ]
A.90°
B.60°
C.45°
D.30°

查看答案和解析>>

圓的滾動問題探索:
(1)如圖1,一個半徑為r的圓沿直線方向從A地滾動到B地,若AB的長為m,則該圓在滾動過程中自轉(zhuǎn)了______圈.(用含的式子表示)
試驗:
現(xiàn)有兩個半徑相等的圓(如圖5),將⊙O2固定,⊙O1沿定圓的周圍滾動,滾動時兩圓保持相外切的位置關系.當⊙O1沿⊙O2周圍滾動一周回到原來的位置時,⊙O1自轉(zhuǎn)了2圈,而⊙O1的圓心運動的線路也是一個圓,而這個圓的周長恰好是⊙O1的周長的2倍.
(2)如圖2,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的周圍滾動,滾動時兩圓保持相外切的位置關系.當⊙O1沿⊙O2沿周圍滾動一周回到原來的位置時,⊙O1自轉(zhuǎn)了______圈;
作業(yè)寶
(3)如圖3,⊙O1,和⊙O2內(nèi)切,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的邊緣滾動,動時兩圓保持相內(nèi)切的位置關系.當⊙O1沿⊙O2邊緣滾動一圈回到原來的位置時,⊙O1自轉(zhuǎn)了______圈.
解決問題:
如圖4,一個等邊三角形與它的一邊相切的圓的周長相等,當此圓按箭頭方向從某一位置沿等邊三角形的三邊作無滑動滾動,直至回到原來的位置時,該圓自轉(zhuǎn)了多少圈?請說明理由.作業(yè)寶

查看答案和解析>>

圓的滾動問題探索:
(1)如圖1,一個半徑為r的圓沿直線方向從A地滾動到B地,若AB的長為m,則該圓在滾動過程中自轉(zhuǎn)了______圈.(用含的式子表示)
試驗:
現(xiàn)有兩個半徑相等的圓(如圖5),將⊙O2固定,⊙O1沿定圓的周圍滾動,滾動時兩圓保持相外切的位置關系.當⊙O1沿⊙O2周圍滾動一周回到原來的位置時,⊙O1自轉(zhuǎn)了2圈,而⊙O1的圓心運動的線路也是一個圓,而這個圓的周長恰好是⊙O1的周長的2倍.
(2)如圖2,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的周圍滾動,滾動時兩圓保持相外切的位置關系.當⊙O1沿⊙O2沿周圍滾動一周回到原來的位置時,⊙O1自轉(zhuǎn)了______圈;

(3)如圖3,⊙O1,和⊙O2內(nèi)切,⊙O1的半徑為r,⊙O2的半徑為R(R>r),現(xiàn)將⊙O2固定,讓,⊙O1沿⊙O2的邊緣滾動,動時兩圓保持相內(nèi)切的位置關系.當⊙O1沿⊙O2邊緣滾動一圈回到原來的位置時,⊙O1自轉(zhuǎn)了______圈.
解決問題:
如圖4,一個等邊三角形與它的一邊相切的圓的周長相等,當此圓按箭頭方向從某一位置沿等邊三角形的三邊作無滑動滾動,直至回到原來的位置時,該圓自轉(zhuǎn)了多少圈?請說明理由.

查看答案和解析>>

(1)如圖(1)兩個圓中,⊙O1與⊙O2相交于A、B,過B點的直線交兩圓于C、D,已知⊙O1與⊙O2的半徑分別為6和8,求證:AD:AC的比值為定值;
(2)如圖(2),D為線段AB延長線上的一點,△ABC與△BDE都是等邊三角形,連接CE并延長,△ABC的外接圓⊙O交CF于M,請解答下列問題:
①求證:BE切⊙O于B;
②若CM=2,MF=6,求⊙O的半徑;
③過D作DG∥BE交EF于G,過G作GH∥DE交DF于H,設△ABC、△BDE、△DHG的面積分別為S1、S2、S3,試探究S1、S2、S3之間的關系.

查看答案和解析>>


同步練習冊答案