按要求畫圖 請設計三種不同的方法.將如圖所示直角三角形分割成四個小三角形.使得每個小三角形與原直角三角形都相似.(要求畫出分割線段.標出能夠說明分法的必要記號.不要求證明.不要求寫畫法). 查看更多

 

題目列表(包括答案和解析)

25、如圖,一個圓形街心花園,有三個出口A、B、C,每兩個出口之間有一條長60米的道路,組成正三角形ABC,在中心O處有一個亭子.為使亭子與原有的道路相通,需修三條小路OD、OE、OF,使另一出口D、E、F分別落在三角形的三邊上,且這三條小道把三角形分成三個全等的多邊形,以備種植不同的花草,
(1)請你按以上要求設計兩種不同的方案.將你的設計方案分別畫在圖(a)、圖(b)上,并附簡單的說明;
(2)要使三條小道把三角形分成三個全等的等腰梯形,應怎樣設計?把方案畫在圖(c)上,并簡單說明畫法(不需證明);
(3)請你探究出一種一般方法,使得D不論在什么位置,都能準確找到另外兩個出口E、F的位置,請寫明這個畫法.用圖(d)表示出來.
(4)你在上圖中探索出的一般方法是否適用于正方形?請結(jié)合圖(e)予以說明;這種方法可以推廣到正n邊形嗎?

查看答案和解析>>

如圖,一個圓形街心花園,有三個出口A、B、C,每兩個出口之間有一條長60米的道路,組成正三角形ABC,在中心O處有一個亭子.為使亭子與原有的道路相通,需修三條小路OD、OE、OF,使另一出口D、E、F分別落在三角形的三邊上,且這三條小道把三角形分成三個全等的多邊形,以備種植不同的花草,
(1)請你按以上要求設計兩種不同的方案.將你的設計方案分別畫在圖(a)、圖(b)上,并附簡單的說明;
(2)要使三條小道把三角形分成三個全等的等腰梯形,應怎樣設計?把方案畫在圖(c)上,并簡單說明畫法(不需證明);
(3)請你探究出一種一般方法,使得D不論在什么位置,都能準確找到另外兩個出口E、F的位置,請寫明這個畫法.用圖(d)表示出來.
(4)你在上圖中探索出的一般方法是否適用于正方形?請結(jié)合圖(e)予以說明;這種方法可以推廣到正n邊形嗎?

查看答案和解析>>

如圖,一個圓形街心花園,有三個出口A、B、C,每兩個出口之間有一條長60米的道路,組成正三角形ABC,在中心O處有一個亭子.為使亭子與原有的道路相通,需修三條小路OD、OE、OF,使另一出口D、E、F分別落在三角形的三邊上,且這三條小道把三角形分成三個全等的多邊形,以備種植不同的花草,
(1)請你按以上要求設計兩種不同的方案.將你的設計方案分別畫在圖(a)、圖(b)上,并附簡單的說明;
(2)要使三條小道把三角形分成三個全等的等腰梯形,應怎樣設計?把方案畫在圖(c)上,并簡單說明畫法(不需證明);
(3)請你探究出一種一般方法,使得D不論在什么位置,都能準確找到另外兩個出口E、F的位置,請寫明這個畫法.用圖(d)表示出來.
(4)你在上圖中探索出的一般方法是否適用于正方形?請結(jié)合圖(e)予以說明;這種方法可以推廣到正n邊形嗎?

查看答案和解析>>

如圖,正方形表示一張紙片,根據(jù)要求,需通過多次分割,將正方形紙片分割成若干個直角三角形,操作過程如下:第一次分割,將正方形紙片分成4個全等的直角三角形;第二次分割,將上次得到的直角三角形中的一個再分成4個全等直角三角形;以后按第二次分割的做法進行下去.

(1)請你設計出兩種符合題意的分割方案圖(要求在圖1、圖2中分別畫出每種方案的第一次和第二次的分割線,只要有一條分割線段不同,就視為一種不同方案,圖3供操作、實驗用).

(2)設正方形的邊長為a,請你就其中一種方案通過操作和觀察將第二、第三次分割后所得的最小直角三角形的面積S填入下表:

(3)在條件(2)下,請你猜想:分割所得的最小直角三角形的面積S與分割次數(shù)n有什么關系?用數(shù)學表達式表示出來.

查看答案和解析>>

【問題引入】
幾個人拎著水桶在一個水龍頭前面排隊打水,水桶有大有。麄冊撛鯓优抨牪拍苁沟每偟呐抨爼r間最短?
假設只有兩個人時,設大桶接滿水需要T分鐘,小桶接滿水需要t分鐘(顯然T>t),若拎著大桶者在拎著小桶者之前,則拎大桶者可直接接水,只需等候T分鐘,拎小桶者一共等候了(T+t)分鐘,兩人一共等候了(2T+t)分鐘;反之,若拎小桶者在拎大桶者前面,容易求出出兩人接滿水等候(T+2t)分鐘.可見,要使總的排隊時間最短,拎小桶者應排在拎大桶者前面.這樣,我們可以猜測,幾個人拎著水桶在一個水龍頭前面排隊打水,要使總的排隊時間最短,需將他們按水桶從小到大排隊.
規(guī)律總結(jié):
事實上,只要不按從小到大的順序排隊,就至少有緊挨著的兩個人拎著大桶者排在拎小桶者之前,仍設大桶接滿水需要T分鐘,小桶接滿水需要t分鐘,并設拎大桶者開始接水時已等候了m分鐘,這樣拎大桶者接滿水一共等候了(m+T)分鐘,拎小桶者一共等候了(m+T+t)分鐘,兩人一共等候了(2m+2T+t)分鐘,在其他人位置不變的前提下,讓這兩個人交還位置,即局部調(diào)整這兩個人的位置,同樣介意計算兩個人接滿水共等候了______分鐘,共節(jié)省了______分鐘,而其他人等候的時間未變,這說明只要存在有緊挨著的兩個人是拎大桶者在拎小桶者之前都可以這樣調(diào)整,從而使得總等候時間減少.這樣經(jīng)過一系列調(diào)整后,整個隊伍都是從小打到排列,就打到最優(yōu)狀態(tài),總的排隊時間就最短.
【方法探究】
一般的,對某些設計多個可變對象的數(shù)學問題,先對其少數(shù)對象進行調(diào)整,其他對象暫時保持不變,從而化難為易,取得問題的局部解決.經(jīng)過若干次這種局部的調(diào)整,不斷縮小范圍,逐步逼近目標,最終使問題得到解決,這種數(shù)學思想就叫做局部調(diào)整法.
【實踐應用1】
如圖1在銳角△ABC中,AB=,∠BAC=45°,∠BAC的平分線交BC于點D,M、N分別是AD和AB上的動點,則BM+MN的最小值是多少?
解析:
(1)先假定N為定點,調(diào)整M到合適的位置使BM+MN有最小值(相對的),容易想到,在AC上作AN′=AN(即作點N關于AD的對稱點N'),連接BN′交AD于M,則M點是使BM+MN有相對最小值的點.(如圖2,M點是確定方法找到的)
(2)在考慮點N的位置,使BM+MN最終達到最小值.可以理解,BM+MN=BM+MN′,所以要使BM+MN′有最小值,只需使______,此時BM+MN的最小值是______.
【實踐應用2】
如圖3,把邊長是3的正方形等分成9個小正方形,在有陰影的小正方形內(nèi)(包括邊界)分別取點P、R,于已知格點Q(每個小正方形的頂點叫做格點)構(gòu)成三角形,則△PQR的最大面積是______,請在圖4中畫出面積最大時的△PQR的圖形.

查看答案和解析>>


同步練習冊答案