題目列表(包括答案和解析)
關(guān)于的二次函數(shù)+,其中為銳角,則:
① 當(dāng)為30°時(shí),函數(shù)有最小值-;
② 函數(shù)圖象與坐標(biāo)軸必有三個(gè)交點(diǎn),并且當(dāng)為45°時(shí),連結(jié)這三個(gè)交點(diǎn)所圍成的三角形面積小于1;
③ 當(dāng)<60°時(shí),函數(shù)在x >1時(shí),y隨x的增大而增大;
④ 無論銳角怎么變化,函數(shù)圖象必過定點(diǎn)。
其中正確的結(jié)論有( )
A. ①② B. ①②③ C. ①②④ D. ②③④
給出下面四個(gè)方程的變形:
①變形為;②變形為;
③變形為;④變形為。其中變形正確的是( )
A.①③④ B.①②④ C.②③④ D.①②③
問題提出
我們?cè)诜治鼋鉀Q某些數(shù)學(xué)問題時(shí),經(jīng)常要比較兩個(gè)數(shù)或代數(shù)式的大小,而解決問題的策略一般要進(jìn)行一定的轉(zhuǎn)化,其中“作差法”就是常用的方法之一.所謂“作差法”:就是通過作差、變形,并利用差的符號(hào)確定他們的大小,即要比較代數(shù)式M、N的大小,只要作出它們的差M-N,若M-N>0,則M>N;若M-N=0,則M=N;若M-N<0,則M<N.
問題解決
如圖1,把邊長為a+b(a≠b)的大正方形分割成兩個(gè)邊長分別是a、b的小正方形及兩個(gè)矩形,試比較兩個(gè)小正方形面積之和M與兩個(gè)矩形面積之和N的大。
解:由圖可知:M=a2+b2,N=2ab.
∴M-N=a2+b2-2ab=(a-b)2.
∵a≠b,∴(a-b)2>0.
∴M-N>0.
∴M>N.
類比應(yīng)用
1.已知:多項(xiàng)式M =2a2-a+1 ,N =a2-2a .試比較M與N的大。
2.已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊
滿足a <b < c ,現(xiàn)將△ABC 補(bǔ)成長方形,使得△ABC的兩個(gè)頂
點(diǎn)為長方形的兩個(gè)端點(diǎn),第三個(gè)頂點(diǎn)落在長方形的這一邊的對(duì)邊上。
①這樣的長方形可以畫 個(gè);
②所畫的長方形中哪個(gè)周長最?為什么?
拓展延伸
已知:如圖,銳角△ABC (其中BC為a,AC為b,AB為c)三邊滿足a <b < c ,畫其BC邊上的內(nèi)接正方形EFGH , 使E、F兩點(diǎn)在邊BC上,G、H分別在邊AC、AB上,同樣還可畫AC、AB邊上的內(nèi)接正方形,問哪條邊上的內(nèi)接正方形面積最大?為什么?
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com