∴.即ac=1.(2)連結(jié)PD.交x軸于E.直線PD必為拋物線的對(duì)稱軸.連結(jié)AD.BD.圖代13-3-22∴ ..∵ a>0,x2>x1.∴ ..又 ED=OC=c.∴ .(3)設(shè)∠PAB=β.∵P點(diǎn)的坐標(biāo)為.又∵a>0.∴在Rt△PAE中..∴ .∴ tgβ=tgα. ∴β=α.∴∠PAE=∠ADE.∵ ∠ADE+∠DAE=90°∴PA和⊙D相切. 查看更多

 

題目列表(包括答案和解析)

如圖1,以點(diǎn)O為圓心,半徑為4的圓交x軸于A,B兩點(diǎn),交y軸于C,D兩點(diǎn),點(diǎn)P為弧AC上的一動(dòng)點(diǎn),延長(zhǎng)CP交x軸于點(diǎn)E;連接PB,交OC于點(diǎn)F.
(1)若點(diǎn)F為OC的中點(diǎn),求PB的長(zhǎng);
精英家教網(wǎng)
(2)求CP•CE的值;
(3)如圖2,過(guò)點(diǎn)OH∥AP交PD于點(diǎn)H,當(dāng)點(diǎn)P在弧AC上運(yùn)動(dòng)時(shí),試問(wèn)
APDH
的值是否保持不變;若不變,試證明,求出它的值;若發(fā)生變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖1,以點(diǎn)O為圓心,半徑為4的圓交x軸于A,B兩點(diǎn),交y軸于C,D兩點(diǎn),點(diǎn)P為弧AC上的一動(dòng)點(diǎn),延長(zhǎng)CP交x軸于點(diǎn)E;連接PB,交OC于點(diǎn)F.
(1)若點(diǎn)F為OC的中點(diǎn),求PB的長(zhǎng);

(2)求CP•CE的值;
(3)如圖2,過(guò)點(diǎn)OH∥AP交PD于點(diǎn)H,當(dāng)點(diǎn)P在弧AC上運(yùn)動(dòng)時(shí),試問(wèn)的值是否保持不變;若不變,試證明,求出它的值;若發(fā)生變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖1,以點(diǎn)O為圓心,半徑為4的圓交x軸于A,B兩點(diǎn),交y軸于C,D兩點(diǎn),點(diǎn)P為弧AC上的一動(dòng)點(diǎn),延長(zhǎng)CP交x軸于點(diǎn)E;連接PB,交OC于點(diǎn)F.
(1)若點(diǎn)F為OC的中點(diǎn),求PB的長(zhǎng);

(2)求CP•CE的值;
(3)如圖2,過(guò)點(diǎn)OH∥AP交PD于點(diǎn)H,當(dāng)點(diǎn)P在弧AC上運(yùn)動(dòng)時(shí),試問(wèn)的值是否保持不變;若不變,試證明,求出它的值;若發(fā)生變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

如圖1,以點(diǎn)O為圓心,半徑為4的圓交x軸于A,B兩點(diǎn),交y軸于C,D兩點(diǎn),點(diǎn)P為弧AC上的一動(dòng)點(diǎn),延長(zhǎng)CP交x軸于點(diǎn)E;連接PB,交OC于點(diǎn)F.
(1)若點(diǎn)F為OC的中點(diǎn),求PB的長(zhǎng);

(2)求CP•CE的值;
(3)如圖2,過(guò)點(diǎn)OH∥AP交PD于點(diǎn)H,當(dāng)點(diǎn)P在弧AC上運(yùn)動(dòng)時(shí),試問(wèn)數(shù)學(xué)公式的值是否保持不變;若不變,試證明,求出它的值;若發(fā)生變化,請(qǐng)說(shuō)明理由.

查看答案和解析>>

已知拋物線y=ax2+bx+c(a<0)與x軸交于A、B兩點(diǎn),點(diǎn)A在x軸的負(fù)半軸上,點(diǎn)B在x軸的正半軸上,又此拋物線交y軸于點(diǎn)C,連AC、BC,且滿足△OAC的面積與△OBC的面積之差等于兩線段OA與OB的積(即S△OAC-S△OBC=OA•OB)
(1)求b的值;
(2)若tan∠CAB=
1
2
,拋物線的頂點(diǎn)為點(diǎn)P,是否存在這樣的拋物線,使得△PAB的外接圓半徑為
13
4
?若存在,求出這樣的拋物線的解析式;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>


同步練習(xí)冊(cè)答案