∴AC⊥平面SDB.又SB平面SDB.∴AC⊥SB. 查看更多

 

題目列表(包括答案和解析)

如圖,四棱錐S-ABCD中,底面ABCD是等腰梯形,AB∥DC,∠CAB=
π
4
,tan∠ACB=
1
2
,AC交BD于O.
(Ⅰ)若SB⊥平面ABCD,求證:AC⊥平面SBD;
(Ⅱ)已知點E,P分別在SD,SA上,滿足3DE=4ES,AP=2PS.
求證:PB∥面EAC.

查看答案和解析>>

在直角梯形ABCD中,∠A=∠D=90°,AB<CD,SD⊥平面ABCD,AB=AD=a,S D=
2
a
,在線段SA上取一點E(不含端點)使EC=AC,截面CDE與SB交于點F.
(1)求證:四邊形EFCD為直角梯形;
(2)設(shè)SB的中點為M,當
CD
AB
的值是多少時,能使△DMC為直角三角形?請給出證明.

查看答案和解析>>

精英家教網(wǎng)已知三棱柱ABC-A1B1C1,A1在底面ABC上的射影恰為AC的中點D,∠BCA=90°,AC=BC=2,又知BA1⊥AC1
(1)求證:AC1⊥平面A1BC;
(2)求點C到平面A1AB的距離.

查看答案和解析>>

精英家教網(wǎng)已知三棱柱ABC-A1B1C1,A1在底面ABC上的射影恰為AC的中點D,∠BCA=90°,AC=BC=2,又知BA1⊥AC1
(1)求證:AC1⊥平面A1BC;
(2)求二面角A-A1B-C的余弦值的大。

查看答案和解析>>

精英家教網(wǎng)己知三棱柱ABC-A1B1C1,A1在底面ABC上的射影恰為AC的中點D,∠BCA=90°,AC=BC=2,又知BA1⊥AC1
(Ⅰ)求證:AC1⊥平面A1BC;
(Ⅱ)求點C到平面A1AB的距離;
(Ⅲ)求二面角A-A1B-C余弦值的大。

查看答案和解析>>


同步練習冊答案