9.一個圓柱形容器的軸截面尺寸如右圖所示.容器內有一個實心的球.球的直徑恰等于圓柱的高.現(xiàn)用水將該容器注滿.然后取出該球(假設球的密度大于水且操作過程中水量損失不計).則球取出后.容 查看更多

 

題目列表(包括答案和解析)

一個圓柱形容器的軸截面尺寸如右圖所示,容器內有一個實心的球,球的直徑恰等于圓柱的高.現(xiàn)用水將該容器注滿,然后取出該球(假設球的密度大于水且操作過程中水量損失不計),則球取出后,容器中水面的高度為    cm.

查看答案和解析>>

一個圓柱形容器的軸截面尺寸如右圖所示,容器內有一個實心的球,球的直徑恰等于圓柱的高.現(xiàn)用水將該容器注滿,然后取出該球(假設球的密度大于水且操作過程中水量損失不計),則球取出后,容器中水面的高度為    cm.

查看答案和解析>>

一個圓柱形容器的軸截面尺寸如右圖所示,容器內有一個實心的球,球的直徑恰等于圓柱的高.現(xiàn)用水將該容器注滿,然后取出該球(假設球的密度大于水且操作過程中水量損失不計),則球取出后,容器中水面的高度為    cm.

查看答案和解析>>

一個圓柱形容器的軸截面尺寸如右圖所示,容器內有一個實心的球,球的直徑恰等于圓柱的高.現(xiàn)用水將該容器注滿,然后取出該球(假設球的密度大于水且操作過程中水量損失不計),則球取出后,容器中水面的高度為    cm.

查看答案和解析>>

一個圓柱形容器的軸截面尺寸如右圖所示,容器內有一個實心的球,球的直徑恰等于圓柱的高.現(xiàn)用水將該容器注滿,然后取出該球(假設球的密度大于水且操作過程中水量損失不計),則球取出后,容器中水面的高度為    cm.

查看答案和解析>>

一、填空題:(5’×11=55’)

題號

1

2

3

4

5

6

答案

0

(1,2)

2

題號

7

8

9

10

11

 

答案

4

8.3

②、③

 

二、選擇題:(4’×4=16’)

題號

12

13

14

15

答案

A

C

B

      • 20090116

        三、解答題:(12’+14’+15’+16’+22’=79’)

        16.解:由條件,可得,故左焦點的坐標為

        為橢圓上的動點,由于橢圓方程為,故

        因為,所以

        ,

        由二次函數(shù)性質可知,當時,取得最小值4.

        所以,的模的最小值為2,此時點坐標為

        17.解:(1)當時,;

        時,;

        時,;(不單獨分析時的情況不扣分)

        時,

        (2)由(1)知:當時,集合中的元素的個數(shù)無限;

        時,集合中的元素的個數(shù)有限,此時集合為有限集.

        因為,當且僅當時取等號,

        所以當時,集合的元素個數(shù)最少.

        此時,故集合

        18.(本題滿分15分,1小題6分,第2小題9

        解:

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         

         (2)解:如圖所示.由,,則

        所以,四棱錐的體積為

        19.解:(1)根據(jù)三條規(guī)律,可知該函數(shù)為周期函數(shù),且周期為12.

        由此可得,

        由規(guī)律②可知,,

        ;

        又當時,,

        所以,,由條件是正整數(shù),故取

            綜上可得,符合條件.

        (2) 解法一:由條件,,可得

        ,

        ,

        ,

        因為,所以當時,,

        ,即一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

        解法二:列表,用計算器可算得

        月份

        6

        7

        8

        9

        10

        11

        人數(shù)

        383

        463

        499

        482

        416

        319

        故一年中的7,8,9,10四個月是該地區(qū)的旅游“旺季”.

        20.解:(1)依條件得: 則無窮等比數(shù)列各項的和為:

             ;

          (2)解法一:設此子數(shù)列的首項為,公比為,由條件得:,

        ,即    

         則 .

        所以,滿足條件的無窮等比子數(shù)列存在且唯一,它的首項、公比均為,

        其通項公式為,.

        解法二:由條件,可設此子數(shù)列的首項為,公比為

        ………… ①

        又若,則對每一

        都有………… ②

        從①、②得;

        ;

        因而滿足條件的無窮等比子數(shù)列存在且唯一,此子數(shù)列是首項、公比均為無窮等比子

        數(shù)列,通項公式為,

        (3)以下給出若干解答供參考,評分方法參考本小題閱卷說明:

        問題一:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和互為倒數(shù)?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

        解:假設存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和之積為1。設這兩個子數(shù)列的首項、公比分別為,其中,則

        ,

        因為等式左邊或為偶數(shù),或為一個分數(shù),而等式右邊為兩個奇數(shù)的乘積,還是一個奇數(shù)。故等式不可能成立。所以這樣的兩個子數(shù)列不存在。

        【以上解答屬于層級3,可得設計分4分,解答分6分】

        問題二:是否存在數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們各項的和相等?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

        解:假設存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使它們的各項和相等。設這兩個子數(shù)列的首項、公比分別為,其中,則

        ………… ①

        ,則①,矛盾;若,則①

        ,矛盾;故必有,不妨設,則

        ………… ②

        1時,②,等式左邊是偶數(shù),

        右邊是奇數(shù),矛盾;

        2時,②

        兩個等式的左、右端的奇偶性均矛盾;

        綜合可得,不存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得它們的各項和相等。

        【以上解答屬于層級4,可得設計分5分,解答分7分】

        問題三:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?若存在,求出所有滿足條件的子數(shù)列;若不存在,說明理由.

        解:假設存在滿足條件的原數(shù)列的兩個不同的無窮等比子數(shù)列。設這兩個子數(shù)列的首項、公比分別為,其中,則

        ,

        顯然當時,上述等式成立。例如取,得:

        第一個子數(shù)列:,各項和;第二個子數(shù)列:,

        各項和,有,因而存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍。

        【以上解答屬層級3,可得設計分4分,解答分6分.若進一步分析完備性,可提高一個層級評分】

        問題四:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):存在。

        問題五:是否存在原數(shù)列的兩個不同的無窮等比子數(shù)列,使得其中一個數(shù)列的各項和等于另一個數(shù)列的各項和的倍?并說明理由.解(略):不存在.

        【以上問題四、問題五等都屬于層級4的問題設計,可得設計分5分。解答分最高7分】

         


        同步練習冊答案